By a theorem of Majid, every monoidal category with a neutral quasi-monoidal functor to finitely generated and projective -modules gives rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the associated coquasi-bialgebra admits a preantipode, providing in this way an analogue for coquasi-bialgebras of Ulbrich’s reconstruction theorem for Hopf algebras. When is a field, this allows us to characterize coquasi-Hopf algebras as well in terms of rigidity of finite-dimensional corepresentations.

Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories

Saracco P.
First
2020-01-01

Abstract

By a theorem of Majid, every monoidal category with a neutral quasi-monoidal functor to finitely generated and projective -modules gives rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the associated coquasi-bialgebra admits a preantipode, providing in this way an analogue for coquasi-bialgebras of Ulbrich’s reconstruction theorem for Hopf algebras. When is a field, this allows us to characterize coquasi-Hopf algebras as well in terms of rigidity of finite-dimensional corepresentations.
2020
0
0
https://link.springer.com/article/10.1007/s10468-019-09931-2
https://arxiv.org/abs/1611.06819
Coquasi-bialgebra; Coquasi-Hopf algebra; Preantipode; Reconstruction; Rigid monoidal category; Tensor functor
Saracco P.
File in questo prodotto:
File Dimensione Formato  
2019-07-26_Saracco - Preantipode and Rigidity - ALGE.pdf

Open Access dal 24/02/2021

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 683.53 kB
Formato Adobe PDF
683.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1734182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact