In this study, we focused on the effect of an enterocin or an Enterococcus faecalis strain added onto sliced dry-cured ham that was artificially inoculated with Listeria monocytogenes and stored at 78C. The population of L. monocytogenes and the expression of five genes were monitored throughout the storage period. A persistent and a nonpersistent strain were tested, and both were influenced by the presence of the enterocin; both populations were reduced by more than 2 Log CFU/g after 14 days compared with the control, noninoculated ham. The presence of E. faecalis, a bacteriocin-producing lactic acid bacterium, had a less pronounced effect on the viable counts for both strains. Concerning gene expression, a common trend observed for both strains in the presence of enterocin was the down-regulation of genes tested after 30 min of storage at 78C. For the remainder of the storage period, the expression fluctuated but was mostly reduced. Similarly, the presence of E. faecalis led to an overall down-regulation of genes. The effect on gene expression of both enterocin and E. faecalis was more pronounced on the nonpersistent L. monocytogenes strain. Although the potential of a bacteriocin and a bacteriocin-producing microorganism to control L. monocytogenes was confirmed, this study highlights that gene expression may be influenced and needs to be evaluated when considering such biopreservation interventions.

Antilisterial Effect and Influence on Listeria monocytogenes Gene Expression of Enterocin or Enterococcus faecalis in Sliced Dry-Cured Ham Stored at 78C

Alessandria V.;Cocolin L. S.;Rantsiou K.
Last
2019

Abstract

In this study, we focused on the effect of an enterocin or an Enterococcus faecalis strain added onto sliced dry-cured ham that was artificially inoculated with Listeria monocytogenes and stored at 78C. The population of L. monocytogenes and the expression of five genes were monitored throughout the storage period. A persistent and a nonpersistent strain were tested, and both were influenced by the presence of the enterocin; both populations were reduced by more than 2 Log CFU/g after 14 days compared with the control, noninoculated ham. The presence of E. faecalis, a bacteriocin-producing lactic acid bacterium, had a less pronounced effect on the viable counts for both strains. Concerning gene expression, a common trend observed for both strains in the presence of enterocin was the down-regulation of genes tested after 30 min of storage at 78C. For the remainder of the storage period, the expression fluctuated but was mostly reduced. Similarly, the presence of E. faecalis led to an overall down-regulation of genes. The effect on gene expression of both enterocin and E. faecalis was more pronounced on the nonpersistent L. monocytogenes strain. Although the potential of a bacteriocin and a bacteriocin-producing microorganism to control L. monocytogenes was confirmed, this study highlights that gene expression may be influenced and needs to be evaluated when considering such biopreservation interventions.
82
9
1598
1606
Biopreservation; Dry-cured ham; Enterocin; Gene expression; Listeria monocytogenes
Montiel R.; Quesille-Villalobos A.; Alessandria V.; Medina M.; Cocolin L.S.; Rantsiou K.
File in questo prodotto:
File Dimensione Formato  
Rantsiou 2019.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 167.61 kB
Formato Adobe PDF
167.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1734693
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact