We present an approach for modelling multivariate dependent functional data. To account for the dominant structural features of the data, we rely on the theory of Gaussian Processes and extend hierarchical dynamic linear models for multivariate time series to the functional data setting. We illustrate the proposed methodology within the framework of bivariate functional data and discuss problemsreferringtodetectionofspatialpatternsandcurveprediction.

Coupled Gaussian Processes for Functional Data Analysis

S. Fontanella;R. Ignaccolo;
2019-01-01

Abstract

We present an approach for modelling multivariate dependent functional data. To account for the dominant structural features of the data, we rely on the theory of Gaussian Processes and extend hierarchical dynamic linear models for multivariate time series to the functional data setting. We illustrate the proposed methodology within the framework of bivariate functional data and discuss problemsreferringtodetectionofspatialpatternsandcurveprediction.
2019
SIS2019: Smart Statistics for smart Applications Book of Short Papers
Milano
18-21 giugno 2019
Smart Statistics for smart Applications Book of Short Papers SIS2019
PEARSON
319
322
9788891915108
L.Fontanella, S.Fontanella, R.Ignaccolo, L.Ippoliti, P.Valentini
File in questo prodotto:
File Dimensione Formato  
2019_Proceeding_SIS_Coupled_GPs.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 99.84 kB
Formato Adobe PDF
99.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1735551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact