We present an approach for modelling multivariate dependent functional data. To account for the dominant structural features of the data, we rely on the theory of Gaussian Processes and extend hierarchical dynamic linear models for multivariate time series to the functional data setting. We illustrate the proposed methodology within the framework of bivariate functional data and discuss problemsreferringtodetectionofspatialpatternsandcurveprediction.
Coupled Gaussian Processes for Functional Data Analysis
S. Fontanella;R. Ignaccolo;
2019-01-01
Abstract
We present an approach for modelling multivariate dependent functional data. To account for the dominant structural features of the data, we rely on the theory of Gaussian Processes and extend hierarchical dynamic linear models for multivariate time series to the functional data setting. We illustrate the proposed methodology within the framework of bivariate functional data and discuss problemsreferringtodetectionofspatialpatternsandcurveprediction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2019_Proceeding_SIS_Coupled_GPs.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
99.84 kB
Formato
Adobe PDF
|
99.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.