Discrimination of the samples into predefined groups is the issue at hand in many fields, such as medicine, environmental and forensic studies, etc. Its success strongly depends on the effectiveness of groups separation, which is optimal when the group means are much more distant than the data within the groups, i.e. the variation of the group means is greater than the variation of the data averaged over all groups. The task is particularly demanding for signals (e.g. spectra) as a lot of effort is required to prepare them in a way to uncover interesting features and turn them into more meaningful information that better fits for the purpose of data analysis. The solution can be adequately handled by using preprocessing strategies which should highlight the features relevant for further analysis (e.g. discrimination) by removing unwanted variation, deteriorating effects, such as noise or baseline drift, and standardising the signals. The aim of the research was to develop an automated procedure for optimising the choice of the preprocessing strategy to make it most suitable for discrimination purposes. The authors propose a novel concept to assess the goodness of the preprocessing strategy using the ratio of the between-groups to within-groups variance on the first latent variable derived from regularised MANOVA that is capable of exposing the groups differences for highly multidimensional data. The quest for the best preprocessing strategy was carried out using the grid search and much more efficient genetic algorithm. The adequacy of this novel concept, that remarkably supports the discrimination analysis, was verified through the assessment of the capability of solving two forensic comparison problems - discrimination between differently-aged bloodstains and various car paints described by Raman spectra - using likelihood ratio framework, as a recommended tool for discriminating samples in the forensics.

Improving discrimination of Raman spectra by optimising preprocessing strategies on the basis of the ability to refine the relationship between variance components

Damin A.;Martra G.;Alladio E.;
2020-01-01

Abstract

Discrimination of the samples into predefined groups is the issue at hand in many fields, such as medicine, environmental and forensic studies, etc. Its success strongly depends on the effectiveness of groups separation, which is optimal when the group means are much more distant than the data within the groups, i.e. the variation of the group means is greater than the variation of the data averaged over all groups. The task is particularly demanding for signals (e.g. spectra) as a lot of effort is required to prepare them in a way to uncover interesting features and turn them into more meaningful information that better fits for the purpose of data analysis. The solution can be adequately handled by using preprocessing strategies which should highlight the features relevant for further analysis (e.g. discrimination) by removing unwanted variation, deteriorating effects, such as noise or baseline drift, and standardising the signals. The aim of the research was to develop an automated procedure for optimising the choice of the preprocessing strategy to make it most suitable for discrimination purposes. The authors propose a novel concept to assess the goodness of the preprocessing strategy using the ratio of the between-groups to within-groups variance on the first latent variable derived from regularised MANOVA that is capable of exposing the groups differences for highly multidimensional data. The quest for the best preprocessing strategy was carried out using the grid search and much more efficient genetic algorithm. The adequacy of this novel concept, that remarkably supports the discrimination analysis, was verified through the assessment of the capability of solving two forensic comparison problems - discrimination between differently-aged bloodstains and various car paints described by Raman spectra - using likelihood ratio framework, as a recommended tool for discriminating samples in the forensics.
2020
202
1
16
Discrimination; Likelihood ratio; Raman spectra; Regularised MANOVA; Signals preprocessing
Martyna A.; Menzyk A.; Damin A.; Michalska A.; Martra G.; Alladio E.; Zadora G.
File in questo prodotto:
File Dimensione Formato  
Improving discrimination of Raman spectra (1).pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 978.1 kB
Formato Adobe PDF
978.1 kB Adobe PDF Visualizza/Apri
1-s2.0-S0169743920301519-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1743941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact