We consider bilinear pseudo-differential operators whose symbols may have a sub-exponential growth at infinity, together with all their derivatives. It is proved that those symbol classes can be described by the means of the short-time Fourier transform and modulation spaces. Our first main result is the invariance property of the corresponding bilinear operators. Furthermore, we prove the continuity of such operators when acting on modulation spaces. As a consequence, we derive their continuity on anisotropic Gelfand–Shilov type spaces.

Bilinear Pseudo-differential Operators with Gevrey–Hörmander Symbols

Coriasco S.;
2020-01-01

Abstract

We consider bilinear pseudo-differential operators whose symbols may have a sub-exponential growth at infinity, together with all their derivatives. It is proved that those symbol classes can be described by the means of the short-time Fourier transform and modulation spaces. Our first main result is the invariance property of the corresponding bilinear operators. Furthermore, we prove the continuity of such operators when acting on modulation spaces. As a consequence, we derive their continuity on anisotropic Gelfand–Shilov type spaces.
2020
17
1
24
http://de.arxiv.org/abs/1906.11095
https://link.springer.com/article/10.1007/s00009-020-01546-y
Bilinear operator; Gelfand–Shilov spaces; Gevrey regularity; modulation spaces; pseudo-differential operators
Abdeljawad A.; Coriasco S.; Teofanov N.
File in questo prodotto:
File Dimensione Formato  
ACTBiPdoCnt.pdf

Open Access dal 02/07/2021

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 413.67 kB
Formato Adobe PDF
413.67 kB Adobe PDF Visualizza/Apri
ACT_BilinearPSDO.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 565.91 kB
Formato Adobe PDF
565.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1758223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact