In this paper we study regularity of partial differential equations with polynomial coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We study the action of transformations of Gabor and Wigner type in such spaces and we prove that a suitable representation of Wigner type allows to prove regularity for classes of operators that do not have classical hypoellipticity properties.

Regularity of global solutions of partial differential equations in non isotropic ultradifferentiable spaces via time-frequency methods

Alessandro Oliaro
2021-01-01

Abstract

In this paper we study regularity of partial differential equations with polynomial coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We study the action of transformations of Gabor and Wigner type in such spaces and we prove that a suitable representation of Wigner type allows to prove regularity for classes of operators that do not have classical hypoellipticity properties.
2021
286
821
855
https://arxiv.org/abs/2011.11982
Non isotropic Ultradifferentiable function, Wigner transform, regularity, global spaces
Claudio Mele; Alessandro Oliaro
File in questo prodotto:
File Dimensione Formato  
Mele_Oliaro_Regularity_PDE.pdf

Open Access dal 01/01/2024

Descrizione: Articolo
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 412.7 kB
Formato Adobe PDF
412.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1781323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact