Inspired by the classical Poincaré criterion about the instability of orientation preserving minimizing closed geodesics on surfaces, we investigate the relation intertwining the instability and the variational properties of periodic solutions of a non-autonomous Lagrangian on a finite dimensional Riemannian manifold. We establish a general criterion for a priori detecting the linear instability of a periodic orbit on a Riemannian manifold for a (maybe not Legendre convex) non-autonomous Lagrangian simply by looking at the parity of the spectral index, which is the right substitute of the Morse index in the framework of strongly indefinite variational problems and defined in terms of the spectral flow of a path of Fredholm quadratic forms on a Hilbert bundle.

Linear instability for periodic orbits of non-autonomous Lagrangian systems

Alessandro Portaluri
First
;
2021-01-01

Abstract

Inspired by the classical Poincaré criterion about the instability of orientation preserving minimizing closed geodesics on surfaces, we investigate the relation intertwining the instability and the variational properties of periodic solutions of a non-autonomous Lagrangian on a finite dimensional Riemannian manifold. We establish a general criterion for a priori detecting the linear instability of a periodic orbit on a Riemannian manifold for a (maybe not Legendre convex) non-autonomous Lagrangian simply by looking at the parity of the spectral index, which is the right substitute of the Morse index in the framework of strongly indefinite variational problems and defined in terms of the spectral flow of a path of Fredholm quadratic forms on a Hilbert bundle.
2021
34
1
237
272
https://arxiv.org/abs/1907.05864
Periodic orbits, Non-autonomous Lagrangian functions, Linear instability, Maslov index, Spectral flow
Alessandro Portaluri, Li Wu, Ran Yang
File in questo prodotto:
File Dimensione Formato  
1907.05864.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 467.21 kB
Formato Adobe PDF
467.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1783765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact