We prove that manifold constrained p(x)-harmonic maps are locally C1,β0-regular outside a set of zero n-dimensional Lebesgue’s measure, for some β∈ (0 , 1). We also provide an estimate from above of the Hausdorff dimension of the singular set.
Partial regularity for manifold constrained p(x)-harmonic maps
De Filippis C.
2019-01-01
Abstract
We prove that manifold constrained p(x)-harmonic maps are locally C1,β0-regular outside a set of zero n-dimensional Lebesgue’s measure, for some β∈ (0 , 1). We also provide an estimate from above of the Hausdorff dimension of the singular set.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1806.07325.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
385.62 kB
Formato
Adobe PDF
|
385.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.