Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
A partial-wave analysis is performed for the process e+e-→K+K-π0π0 at the center-of-mass energies ranging from 2.000 to 2.644 GeV. The data samples of e+e-collisions, collected by the BESIII detector at the BEPCII collider with a total integrated luminosity of 300 pb-1, are analyzed. The total Born cross sections for the process e+e-→K+K-π0π0, as well as the Born cross sections for the subprocesses e+e-→φπ0π0, K+(1460)K-, K1+(1400)K-, K1+(1270)K-, and K∗+(892)K∗-(892), are measured versus the center-of-mass energy. The corresponding results for e+e-→K+K-π0π0 and φπ0π0 are consistent with those of BABAR with better precision. By analyzing the cross sections for the four subprocesses, K+(1460)K-, K1+(1400)K-, K1+(1270)K-, and K∗+(892)K∗-(892), a structure with mass M=(2126.5±16.8±12.4) MeV/c2 and width Γ=(106.9±32.1±28.1) MeV is observed with an overall statistical significance of 6.3σ, although with very limited significance in the subprocesses e+e-→K1+(1270)K- A nd K∗+(892)K∗-(892). The resonant parameters of the observed structure suggest it can be identified with the φ(2170), thus the results provide valuable input to the internal nature of the φ(2170).
Observation of a Resonant Structure in e+e-→K+K-π0π0
Ablikim M.;Achasov M. N.;Adlarson P.;Ahmed S.;Albrecht M.;Amoroso A.;An Q.;Anita A.;Bai Y.;Bakina O.;Baldini Ferroli R.;Balossino I.;Ban Y.;Begzsuren K.;Bennett J. V.;Berger N.;Bertani M.;Bettoni D.;Bianchi F.;Biernat J.;Bloms J.;Boyko I.;Briere R. A.;Cai H.;Cai X.;Calcaterra A.;Cao G. F.;Cao N.;Cetin S. A.;Chang J. F.;Chang W. L.;Chelkov G.;Chen D. Y.;Chen G.;Chen H. S.;Chen M. L.;Chen S. J.;Chen X. R.;Chen Y. B.;Cheng W.;Cibinetto G.;Cossio F.;Cui X. F.;Dai H. L.;Dai J. P.;Dai X. C.;Dbeyssi A.;Dedovich D.;Deng Z. Y.;Denig A.;Denysenko I.;Destefanis M.;De Mori F.;Ding Y.;Dong C.;Dong J.;Dong L. Y.;Dong M. Y.;Du S. X.;Fang J.;Fang S. S.;Fang Y.;Farinelli R.;Fava L.;Feldbauer F.;Felici G.;Feng C. Q.;Fritsch M.;Fu C. D.;Fu Y.;Gao X. L.;Gao Y.;Gao Y.;Gao Y. G.;Garzia I.;Gersabeck E. M.;Gilman A.;Goetzen K.;Gong L.;Gong W. X.;Gradl W.;Greco M.;Gu L. M.;Gu M. H.;Gu S.;Gu Y. T.;Guan C. Y.;Guo A. Q.;Guo L. B.;Guo R. P.;Guo Y. P.;Guo Y. P.;Guskov A.;Han S.;Han T. T.;Han T. Z.;Hao X. Q.;Harris F. A.;He K. L.;Heinsius F. H.;Held T.;Heng Y. K.;Himmelreich M.;Holtmann T.;Hou Y. R.;Hou Z. L.;Hu H. M.;Hu J. F.;Hu T.;Hu Y.;Huang G. S.;Huang L. Q.;Huang X. T.;Huesken N.;Hussain T.;Ikegami Andersson W.;Imoehl W.;Irshad M.;Jaeger S.;Janchiv S.;Ji Q.;Ji Q. P.;Ji X. B.;Ji X. L.;Jiang H. B.;Jiang X. S.;Jiang X. Y.;Jiao J. B.;Jiao Z.;Jin D. P.;Jin S.;Jin Y.;Johansson T.;Kalantar-Nayestanaki N.;Kang X. S.;Kappert R.;Kavatsyuk M.;Ke B. C.;Keshk I. K.;Khoukaz A.;Kiese P.;Kiuchi R.;Kliemt R.;Koch L.;Kolcu O. B.;Kopf B.;Kuemmel M.;Kuessner M.;Kupsc A.;Kurth M. G.;Kuhn W.;Lane J. J.;Lange J. S.;Larin P.;Lavezzi L.;Leithoff H.;Lellmann M.;Lenz T.;Li C.;Li C. H.;Li C.;Li D. M.;Li F.;Li G.;Li H. B.;Li H. J.;Li J. C.;Li J. L.;Li K.;Li L. K.;Li L.;Li P. L.;Li P. R.;Li S. Y.;Li W. D.;Li W. G.;Li X. H.;Li X. L.;Li X. N.;Li Z. B.;Li Z. Y.;Liang H.;Liang H.;Liang Y. F.;Liang Y. T.;Liao L. Z.;Libby J.;Lin C. X.;Lin D. X.;Liu B.;Liu B. J.;Liu C. X.;Liu D.;Liu D. Y.;Liu F. H.;Liu F.;Liu F.;Liu H. B.;Liu H. M.;Liu H.;Liu H.;Liu J. B.;Liu J. Y.;Liu K.;Liu K. Y.;Liu K.;Liu L.;Liu L. Y.;Liu Q.;Liu S. B.;Liu S.;Liu T.;Liu X.;Liu X. Y.;Liu Y. B.;Liu Z. A.;Liu Z. Q.;Long Y. F.;Lou X. C.;Lu H. J.;Lu J. D.;Lu J. G.;Lu X. L.;Lu Y.;Lu Y. P.;Luo C. L.;Luo M. X.;Luo P. W.;Luo T.;Luo X. L.;Lusso S.;Lyu X. R.;Ma F. C.;Ma H. L.;Ma L. L.;Ma M. M.;Ma Q. M.;Ma R. Q.;Ma R. T.;Ma X. N.;Ma X. X.;Ma X. Y.;Ma Y. M.;Maas F. E.;Maggiora M.;Maldaner S.;Malde S.;Malik Q. A.;Mangoni A.;Mao Y. J.;Mao Z. P.;Marcello S.;Meng Z. X.;Messchendorp J. G.;Mezzadri G.;Min J.;Min T. J.;Mitchell R. E.;Mo X. H.;Mo Y. J.;Morales Morales C.;Muchnoi N. Y.;Muramatsu H.;Nakhoul S.;Nefedov Y.;Nerling F.;Nikolaev I. B.;Ning Z.;Nisar S.;Olsen S. L.;Ouyang Q.;Pacetti S.;Pan X.;Pan Y.;Papenbrock M.;Pathak A.;Patteri P.;Pelizaeus M.;Peng H. P.;Peters K.;Pettersson J.;Ping J. L.;Ping R. G.;Pitka A.;Poling R.;Prasad V.;Qi H.;Qi H. R.;Qi M.;Qi T. Y.;Qian S.;Qiao C. F.;Qin L. Q.;Qin X. P.;Qin X. S.;Qin Z. H.;Qiu J. F.;Qu S. Q.;Rashid K. H.;Ravindran K.;Redmer C. F.;Richter M.;Rivetti A.;Rodin V.;Rolo M.;Rong G.;Rosner C.;Rump M.;Sarantsev A.;Savrie M.;Schelhaas Y.;Schnier C.;Schoenning K.;Shan D. C.;Shan W.;Shan X. Y.;Shao M.;Shen C. P.;Shen P. X.;Shen X. Y.;Sheng H. Y.;Shi H. C.;Shi R. S.;Shi X.;Shi X. D.;Song J. J.;Song Q. Q.;Song X. Y.;Song Y. X.;Sosio S.;Sowa C.;Spataro S.;Sui F. F.;Sun G. X.;Sun J. F.;Sun L.;Sun S. S.;Sun T.;Sun W. Y.;Sun Y. J.;Sun Y. K.;Sun Y. Z.;Sun Z. J.;Sun Z. T.;Tan Y. X.;Tang C. J.;Tang G. Y.;Tang J.;Tang X.;Thoren V.;Tsednee B.;Uman I.;Wang B.;Wang B. L.;Wang C. W.;Wang D. Y.;Wang H. P.;Wang K.;Wang L. L.;Wang L. S.;Wang M.;Wang M. Z.;Wang M.;Wang P. L.;Wang W. P.;Wang X.;Wang X. F.;Wang X. L.;Wang Y.;Wang Y.;Wang Y. D.;Wang Y. F.;Wang Y. Q.;Wang Z.;Wang Z. G.;Wang Z. Y.;Wang Z.;Wang Z.;Weber T.;Wei D. H.;Weidenkaff P.;Weidner F.;Wen H. W.;Wen S. P.;White D. J.;Wiedner U.;Wilkinson G.;Wolke M.;Wollenberg L.;Wu J. F.;Wu L. H.;Wu L. J.;Wu X.;Wu Z.;Xia L.;Xiao H.;Xiao S. Y.;Xiao Y. J.;Xiao Z. J.;Xie Y. G.;Xie Y. H.;Xing T. Y.;Xiong X. A.;Xu G. F.;Xu J. J.;Xu Q. J.;Xu W.;Xu X. P.;Yan L.;Yan L.;Yan W. B.;Yan W. C.;Yan X.;Yang H. J.;Yang H. X.;Yang L.;Yang R. X.;Yang S. L.;Yang Y. H.;Yang Y. X.;Yang Y.;Yang Z.;Ye M.;Ye M. H.;Yin J. H.;You Z. Y.;Yu B. X.;Yu C. X.;Yu G.;Yu J. S.;Yu T.;Yuan C. Z.;Yuan W.;Yuan X. Q.;Yuan Y.;Yue C. X.;Yuncu A.;Zafar A. A.;Zeng Y.;Zhang B. X.;Zhang B. Y.;Zhang C. C.;Zhang D. H.;Zhang G.;Zhang H. H.;Zhang H. Y.;Zhang J. L.;Zhang J. Q.;Zhang J. W.;Zhang J. Y.;Zhang J. Z.;Zhang J.;Zhang J.;Zhang L.;Zhang L.;Zhang S.;Zhang S. F.;Zhang T. J.;Zhang X. Y.;Zhang Y.;Zhang Y. H.;Zhang Y. T.;Zhang Y.;Zhang Y.;Zhang Y.;Zhang Z. H.;Zhang Z. Y.;Zhao G.;Zhao J.;Zhao J. W.;Zhao J. Y.;Zhao J. Z.;Zhao L.;Zhao L.;Zhao M. G.;Zhao Q.;Zhao S. J.;Zhao T. C.;Zhao Y. B.;Zhao Z. G.;Zhemchugov A.;Zheng B.;Zheng J. P.;Zheng Y.;Zheng Y. H.;Zhong B.;Zhong C.;Zhou L.;Zhou L. P.;Zhou Q.;Zhou X.;Zhou X. K.;Zhou X. R.;Zhu A. N.;Zhu J.;Zhu K.;Zhu K. J.;Zhu S. H.;Zhu W. J.;Zhu X. L.;Zhu Y. C.;Zhu Y. S.;Zhu Z. A.;Zhuang J.;Zou B. S.;Zou J. H.
2020-01-01
Abstract
A partial-wave analysis is performed for the process e+e-→K+K-π0π0 at the center-of-mass energies ranging from 2.000 to 2.644 GeV. The data samples of e+e-collisions, collected by the BESIII detector at the BEPCII collider with a total integrated luminosity of 300 pb-1, are analyzed. The total Born cross sections for the process e+e-→K+K-π0π0, as well as the Born cross sections for the subprocesses e+e-→φπ0π0, K+(1460)K-, K1+(1400)K-, K1+(1270)K-, and K∗+(892)K∗-(892), are measured versus the center-of-mass energy. The corresponding results for e+e-→K+K-π0π0 and φπ0π0 are consistent with those of BABAR with better precision. By analyzing the cross sections for the four subprocesses, K+(1460)K-, K1+(1400)K-, K1+(1270)K-, and K∗+(892)K∗-(892), a structure with mass M=(2126.5±16.8±12.4) MeV/c2 and width Γ=(106.9±32.1±28.1) MeV is observed with an overall statistical significance of 6.3σ, although with very limited significance in the subprocesses e+e-→K1+(1270)K- A nd K∗+(892)K∗-(892). The resonant parameters of the observed structure suggest it can be identified with the φ(2170), thus the results provide valuable input to the internal nature of the φ(2170).
Ablikim M.; Achasov M.N.; Adlarson P.; Ahmed S.; Albrecht M.; Amoroso A.; An Q.; Anita A.; Bai Y.; Bakina O.; Baldini Ferroli R.; Balossino I.; Ban Y....espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1796552
Citazioni
3
43
37
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione.
La simulazione si basa sui dati IRIS e presenta gli indicatori calcolati alla data indicata sul report. Si ricorda che in sede di domanda ASN presso il MIUR gli indicatori saranno invece calcolati a partire dal 1° gennaio rispettivamente del quinto/decimo/quindicesimo anno precedente la scadenza del quadrimestre di presentazione della domanda (art 2 del DM 598/2018).
In questa simulazione pertanto il valore degli indicatori potrà differire da quello conteggiato all’atto della domanda ASN effettuata presso il MIUR a seguito di:
Correzioni imputabili a eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori.
Presenza di eventuali errori di catalogazione e/o dati mancanti in IRIS
Variabilità nel tempo dei valori citazionali (per i settori bibliometrici)
Variabilità della finestra temporale considerata in funzione della sessione di domanda ASN a cui si partecipa.
La presente simulazione è stata realizzata sulla base delle regole riportate nel DM 598/2018 e dell'allegata Tabella A e delle specifiche definite all'interno del Focus Group Cineca relativo al modulo IRIS ER. Il Cineca non si assume alcuna responsabilità in merito all'uso che il diretto interessato o terzi faranno della simulazione.