We study the quaternionic Calabi-Yau problem in HyperKähler manifolds with torsion geometry, introduced by Alesker and Verbitsky in [5], on eight-dimensional two-step nilmanifolds $M$ with an Abelian hypercomplex structure. We show that on these manifolds the quaternionic Monge-Ampère equation can always be solved for any data that are invariant under the action of a three-Torus.

The quaternionic Calabi Conjecture on abelian Hypercomplex Nilmanifolds Viewed as Tori Fibrations

Giovanni Gentili;Luigi Vezzoni
2022-01-01

Abstract

We study the quaternionic Calabi-Yau problem in HyperKähler manifolds with torsion geometry, introduced by Alesker and Verbitsky in [5], on eight-dimensional two-step nilmanifolds $M$ with an Abelian hypercomplex structure. We show that on these manifolds the quaternionic Monge-Ampère equation can always be solved for any data that are invariant under the action of a three-Torus.
2022
2022
12
9499
9528
Giovanni Gentili; Luigi Vezzoni
File in questo prodotto:
File Dimensione Formato  
IMRN3.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 286.42 kB
Formato Adobe PDF
286.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2006.05773.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 241.94 kB
Formato Adobe PDF
241.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1797277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact