We study the quaternionic Calabi-Yau problem in HyperKähler manifolds with torsion geometry, introduced by Alesker and Verbitsky in [5], on eight-dimensional two-step nilmanifolds $M$ with an Abelian hypercomplex structure. We show that on these manifolds the quaternionic Monge-Ampère equation can always be solved for any data that are invariant under the action of a three-Torus.
The quaternionic Calabi Conjecture on abelian Hypercomplex Nilmanifolds Viewed as Tori Fibrations
Giovanni Gentili;Luigi Vezzoni
2022-01-01
Abstract
We study the quaternionic Calabi-Yau problem in HyperKähler manifolds with torsion geometry, introduced by Alesker and Verbitsky in [5], on eight-dimensional two-step nilmanifolds $M$ with an Abelian hypercomplex structure. We show that on these manifolds the quaternionic Monge-Ampère equation can always be solved for any data that are invariant under the action of a three-Torus.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IMRN3.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
286.42 kB
Formato
Adobe PDF
|
286.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2006.05773.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
241.94 kB
Formato
Adobe PDF
|
241.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.