A detailed understanding of the microbiome of cheese and dairy products is key to the optimization of flavour, appearance, overall quality and safety. Microorganisms (including bacteria, yeasts, moulds and viruses, especially bacteriophages) from the environment can enter the dairy supply chain at multiple stages with several implications. The ability to track these microorganisms and to understand their function and interaction can be greatly enhanced by the use of high-throughput sequencing. Depending on the specific production technology, dairy products can harbor several strains and antibiotic-resistance genes that can potentially interact with the gut microbiome, once the product is ingested. Milk-associated or cheese-associated microbial communities with their interaction, function and diversity are a key factor for the dairy industry. Multi-omics approaches have been seldom utilized in literature and they need to be further considered. Studying the role, origin, diversity and function of the microbial species involved in the complex system of dairy production can help improve processes in several fields of application. Integrating an extensive sampling procedure with an extensive culture based methodology is necessary. To this end, local producers, and in general stakeholders, should be guided to discover and maintain their microbial diversity. A better management of microbial resources through precision fermentation processes will in turn reduce overall food losses and increase the possibility to use the microbiome in order to increase the local producers' income.

Investigating dairy microbiome: an opportunity to ensure quality, safety and typicity

Ferrocino, Ilario;Rantsiou, Kalliopi;Cocolin, Luca
2022-01-01

Abstract

A detailed understanding of the microbiome of cheese and dairy products is key to the optimization of flavour, appearance, overall quality and safety. Microorganisms (including bacteria, yeasts, moulds and viruses, especially bacteriophages) from the environment can enter the dairy supply chain at multiple stages with several implications. The ability to track these microorganisms and to understand their function and interaction can be greatly enhanced by the use of high-throughput sequencing. Depending on the specific production technology, dairy products can harbor several strains and antibiotic-resistance genes that can potentially interact with the gut microbiome, once the product is ingested. Milk-associated or cheese-associated microbial communities with their interaction, function and diversity are a key factor for the dairy industry. Multi-omics approaches have been seldom utilized in literature and they need to be further considered. Studying the role, origin, diversity and function of the microbial species involved in the complex system of dairy production can help improve processes in several fields of application. Integrating an extensive sampling procedure with an extensive culture based methodology is necessary. To this end, local producers, and in general stakeholders, should be guided to discover and maintain their microbial diversity. A better management of microbial resources through precision fermentation processes will in turn reduce overall food losses and increase the possibility to use the microbiome in order to increase the local producers' income.
2022
73
164
170
Ferrocino, Ilario; Rantsiou, Kalliopi; Cocolin, Luca
File in questo prodotto:
File Dimensione Formato  
Ferrocino et al 2021.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1800753
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact