As the cost of computing devices continues to decrease, swarms of low-end intelligent devices become a more interesting solution for safety-critical applications. The safe execution of such systems, however, usually requires mechanisms ensuring that relevant global properties, expressed as logical formulas, are satisfied. These formulas need to capture properties of the system evolution in time, and of its distribution in space, thus requiring a mix of spatial and temporal logic modalities. Furthermore, in scenarios where access to the cloud might not be available, monitoring their validity should be performed autonomously by the distributed system itself. Previous works show that through the aggregate computing approach, and targeting the field calculus language, automatic translations of spatial or temporal logic formulas into distributed decentralized monitors are possible. However, the definition and translation of properties mixing space and time has not been considered so far. In this paper, we start the investigation on integrating space and time modalities through examples, outlining a roadmap for a fully-fledged distributed monitoring of space-time properties.
Towards aggregate monitoring of spatio-temporal properties
Audrito G.;Torta G.
2021-01-01
Abstract
As the cost of computing devices continues to decrease, swarms of low-end intelligent devices become a more interesting solution for safety-critical applications. The safe execution of such systems, however, usually requires mechanisms ensuring that relevant global properties, expressed as logical formulas, are satisfied. These formulas need to capture properties of the system evolution in time, and of its distribution in space, thus requiring a mix of spatial and temporal logic modalities. Furthermore, in scenarios where access to the cloud might not be available, monitoring their validity should be performed autonomously by the distributed system itself. Previous works show that through the aggregate computing approach, and targeting the field calculus language, automatic translations of spatial or temporal logic formulas into distributed decentralized monitors are possible. However, the definition and translation of properties mixing space and time has not been considered so far. In this paper, we start the investigation on integrating space and time modalities through examples, outlining a roadmap for a fully-fledged distributed monitoring of space-time properties.File | Dimensione | Formato | |
---|---|---|---|
vortex_2021.pdf
Open Access dal 02/10/2023
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
560.93 kB
Formato
Adobe PDF
|
560.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.