Processed cheese is a commercial product characterized by high microbiological stability and extended shelf life obtained through the application of severe heat treatment. However, spore-forming bacteria can survive through thermal processes. Among them, microorganisms belonging to Bacillus genus have been reported. In this study, we examined the microbiological population of the first hours’ production of processed cheeses in an Italian dairy plant during two seasons, between June and October 2020. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify bacteria colonies, allowing the isolation of Bacillus cereus and Bacillus subtilis strains. These results were further confirmed by amplification and sequencing of 16 rRNA bacterial region. A multi-locus sequence type (MLST) analysis was performed to assess the genetic similarity among a selection of isolates. The fourteen B. cereus strains showed two sequence types: ST-32 was observed in only one strain and the ST-371 in the remaining thirteen isolates. On the contrary, all twenty-one B. subtlis strains, included in the study, showed a new allelic profile for the pycA gene, resulting in a new sequence type: ST-249. For B. cereus strains, analysis of toxin genes was performed. All isolates were positive for nheABC, entFM, and cytK, while hblABCD, bceT, and ces were not detected. Moreover, the biofilm-forming ability of B. cereus and B. subtilis strains was assessed, and all selected isolates proved to be biofilm formers (most of them were stronger producers). Considering the genetical similarity between isolates, jointly with the capacity to produce biofilm, the presence of a recurring Bacillus population could be hypothesized.

Characterization of vegetative bacillus cereus and bacillus subtilis strains isolated from processed cheese products in an italian dairy plant

Catania A. M.;Civera T.
;
Di Ciccio P. A.;Grassi M. A.;Morra P.;Dalmasso A.
2021-01-01

Abstract

Processed cheese is a commercial product characterized by high microbiological stability and extended shelf life obtained through the application of severe heat treatment. However, spore-forming bacteria can survive through thermal processes. Among them, microorganisms belonging to Bacillus genus have been reported. In this study, we examined the microbiological population of the first hours’ production of processed cheeses in an Italian dairy plant during two seasons, between June and October 2020. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify bacteria colonies, allowing the isolation of Bacillus cereus and Bacillus subtilis strains. These results were further confirmed by amplification and sequencing of 16 rRNA bacterial region. A multi-locus sequence type (MLST) analysis was performed to assess the genetic similarity among a selection of isolates. The fourteen B. cereus strains showed two sequence types: ST-32 was observed in only one strain and the ST-371 in the remaining thirteen isolates. On the contrary, all twenty-one B. subtlis strains, included in the study, showed a new allelic profile for the pycA gene, resulting in a new sequence type: ST-249. For B. cereus strains, analysis of toxin genes was performed. All isolates were positive for nheABC, entFM, and cytK, while hblABCD, bceT, and ces were not detected. Moreover, the biofilm-forming ability of B. cereus and B. subtilis strains was assessed, and all selected isolates proved to be biofilm formers (most of them were stronger producers). Considering the genetical similarity between isolates, jointly with the capacity to produce biofilm, the presence of a recurring Bacillus population could be hypothesized.
2021
10
11
2876
2888
Bacillus cereus; Bacillus subtilis; Biofilm; MLST; Spoilage; Toxins
Catania A.M.; Civera T.; Di Ciccio P.A.; Grassi M.A.; Morra P.; Dalmasso A.
File in questo prodotto:
File Dimensione Formato  
2021 bacillus.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 778.03 kB
Formato Adobe PDF
778.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1825750
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact