We show that the Peiffer commutator previously defined by Cigoli, Mantovani and Metere can be used to characterize cen-tral extensions of precrossed modules with respect to the sub-category of crossed modules in any semi-abelian category sat-isfying an additional property. We prove that this commuta-tor also characterizes double central extensions, obtaining then some Hopf formulas for the second and third homology objects of internal precrossed modules.

Galois theory and the categorical peiffer commutator

Cigoli A. S.;
2020-01-01

Abstract

We show that the Peiffer commutator previously defined by Cigoli, Mantovani and Metere can be used to characterize cen-tral extensions of precrossed modules with respect to the sub-category of crossed modules in any semi-abelian category sat-isfying an additional property. We prove that this commuta-tor also characterizes double central extensions, obtaining then some Hopf formulas for the second and third homology objects of internal precrossed modules.
2020
22
2
323
346
Central extension; Crossed module; Galois theory; Peiffer commutator; Semi-abelian category
Cigoli A.S.; Duvieusart A.; Gran M.; Mantovani S.
File in questo prodotto:
File Dimensione Formato  
hha539-4mdc.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 316.3 kB
Formato Adobe PDF
316.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1837394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact