The ALICE experiment profited of the Long Shutdown during 2019-2021 in order to expand its physics capabilities and fully profit from the increased LHC luminosity in Run 3. The Inner Tracking System has been replaced with a new silicon tracker based on MAPS technology, and a new tracking device has been added in front of the Muon Spectrometer to improve its vertexing capabilities. The wire chambers for TPC readout have been replaced with new GEM detectors which will minimize ion backflow and allow for continuous data taking: moreover, a new detector array dedicated to fast triggering has been installed. On the software side, a new first pass reconstruction was added in order to handle and reduce the data flow and storage. These upgrades will be presented together with an outlook of the future ALICE upgrades in view of the LHC Run 4, which will include the replacement of the ITS inner tracking layers with upgraded silicon devices and a high-granularity electromagnetic and hadronic calorimeter in the forward direction (FOCAL)
The ALICE Experiment Upgrades
A. Ferretti
;
2022-01-01
Abstract
The ALICE experiment profited of the Long Shutdown during 2019-2021 in order to expand its physics capabilities and fully profit from the increased LHC luminosity in Run 3. The Inner Tracking System has been replaced with a new silicon tracker based on MAPS technology, and a new tracking device has been added in front of the Muon Spectrometer to improve its vertexing capabilities. The wire chambers for TPC readout have been replaced with new GEM detectors which will minimize ion backflow and allow for continuous data taking: moreover, a new detector array dedicated to fast triggering has been installed. On the software side, a new first pass reconstruction was added in order to handle and reduce the data flow and storage. These upgrades will be presented together with an outlook of the future ALICE upgrades in view of the LHC Run 4, which will include the replacement of the ITS inner tracking layers with upgraded silicon devices and a high-granularity electromagnetic and hadronic calorimeter in the forward direction (FOCAL)File | Dimensione | Formato | |
---|---|---|---|
2201.08871.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
567.84 kB
Formato
Adobe PDF
|
567.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.