Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.
Tritordeum as an Innovative Alternative to Wheat: A Comparative Digestion Study on Bread
Landolfi V.;Blandino M.;
2022-01-01
Abstract
Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.File | Dimensione | Formato | |
---|---|---|---|
Nitride et al., 2022.pdf
Accesso aperto
Descrizione: pdf editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
675.7 kB
Formato
Adobe PDF
|
675.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.