Let X be a smooth complex projective variety and let H be an ample line bundle. Assume that X is covered by rational curves with degree one with respect to H and with anticanonical degree greater than or equal to (dim X -1)/2. We prove that there is a covering family of such curves whose numerical class spans an extremal ray in the cone of curves NE(X).

Manifolds covered by lines and extremal rays

NOVELLI, CARLA;
2012-01-01

Abstract

Let X be a smooth complex projective variety and let H be an ample line bundle. Assume that X is covered by rational curves with degree one with respect to H and with anticanonical degree greater than or equal to (dim X -1)/2. We prove that there is a covering family of such curves whose numerical class spans an extremal ray in the cone of curves NE(X).
2012
55
799
814
http://cms.math.ca/cmb/v55/novelliB0722.pdf
rational curves; extremal rays
NOVELLI, CARLA; G. Occhetta
File in questo prodotto:
File Dimensione Formato  
0805.2069-NO4-Lines.pdf

Accesso aperto

Descrizione: preprint
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 514.15 kB
Formato Adobe PDF
514.15 kB Adobe PDF Visualizza/Apri
13 - 2012 - NO4 - Mfds Covered by Lines and Extremal Rays.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 486.33 kB
Formato Adobe PDF
486.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1852279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact