In order to approximate functions defined on ( - 1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted Lp metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation. © 2012.

Lagrange interpolation with exponential weights on ( - 1, 1)

Notarangelo I.
2013-01-01

Abstract

In order to approximate functions defined on ( - 1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted Lp metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation. © 2012.
2013
167
65
93
https://www.sciencedirect.com/science/article/pii/S0021904512002146
Approximation by polynomials; Exponential weights; Lagrange interpolation; Orthogonal polynomials
Mastroianni G.; Notarangelo I.
File in questo prodotto:
File Dimensione Formato  
MastroianniNotarangeloJAT2013.pdf

Accesso aperto

Dimensione 318.38 kB
Formato Adobe PDF
318.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1870049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact