The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.

The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels

Scarpino V.
First
;
Reyneri A.;Blandino M.
Last
2022-01-01

Abstract

The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.
2022
14, 7
448
1
16
aurofusarin; beauvericin; bikaverin; culmorin; deoxynivalenol; deoxynivalenol-3-glucoside; fumonisins; fusaric acid; moniliformin; zearalenone
Scarpino V.; Sulyok M.; Krska R.; Reyneri A.; Blandino M.
File in questo prodotto:
File Dimensione Formato  
Scarpino et al., 2022.pdf

Accesso aperto

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 951.59 kB
Formato Adobe PDF
951.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1884924
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact