The rapid and dynamic pace of Artificial Intelligence (AI) and Machine Learning (ML) is revolutionizing the insurance sector. AI offers significant, very much welcome advantages to insurance companies, and is fundamental to their customer-centricity strategy. It also poses challenges, in the project and implementation phase. Among those, we study Adversarial Attacks, which consist of the creation of modified input data to deceive an AI system and produce false outputs. We provide examples of attacks on insurance AI applications, categorize them, and argue on defence methods and precautionary systems, considering that they can involve few-shot and zero-shot multilabelling. A related topic, with growing interest, is the validation and verification of systems incorporating AI and ML components. These topics are discussed in various sections of this paper.

Adversarial AI in Insurance: Pervasiveness and Resilience

Elisa Luciano;Ron Kenett
2023-01-01

Abstract

The rapid and dynamic pace of Artificial Intelligence (AI) and Machine Learning (ML) is revolutionizing the insurance sector. AI offers significant, very much welcome advantages to insurance companies, and is fundamental to their customer-centricity strategy. It also poses challenges, in the project and implementation phase. Among those, we study Adversarial Attacks, which consist of the creation of modified input data to deceive an AI system and produce false outputs. We provide examples of attacks on insurance AI applications, categorize them, and argue on defence methods and precautionary systems, considering that they can involve few-shot and zero-shot multilabelling. A related topic, with growing interest, is the validation and verification of systems incorporating AI and ML components. These topics are discussed in various sections of this paper.
2023
http://arxiv.org/abs/2301.07520v1
Computer Science - Learning; Computer Science - Learning; q-fin.GN
Elisa Luciano; Matteo Cattaneo; Ron Kenett
File in questo prodotto:
File Dimensione Formato  
arXiv.2301.07520.pdf

Accesso aperto

Dimensione 392.21 kB
Formato Adobe PDF
392.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1889493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact