Large-scale scientific applications are facing an irreversible transition from monolithic, high-performance oriented codes to modular and polyglot deployments of specialised (micro-)services. The reasons behind this transition are many: coupling of standard solvers with Deep Learning techniques, offloading of data analysis and visualisation to Cloud, and the advent of specialised hardware accelerators. Topology-aware Workflow Management Systems (WMSs) play a crucial role. In particular, topology-awareness allows an explicit mapping of workflow steps onto heterogeneous locations, allowing automated executions on top of hybrid architectures (e.g., cloud+HPC or classical+quantum). Plus, topology-aware WMSs can offer nonfunctional requirements OOTB, e.g. components’ life-cycle orchestration, secure and efficient data transfers, fault tolerance, and cross-cluster execution of urgent workloads. Augmenting interactive Jupyter Notebooks with distributed workflow capabilities allows domain experts to prototype and scale applications using the same technological stack, while relying on a feature-rich and user-friendly web interface. This abstract will showcase how these general methodologies can be applied to a typical geoscience simulation pipeline based on the Full Wavefront Inversion (FWI) technique. In particular, a prototypical Jupyter Notebook will be executed interactively on Cloud. Preliminary data analyses and post-processing will be executed locally, while the computationally demanding optimisation loop will be scheduled on a remote HPC cluster.

Hybrid Workflows for Large - Scale Scientific Applications

Iacopo Colonnelli
First
;
Marco Aldinucci
Last
2022-01-01

Abstract

Large-scale scientific applications are facing an irreversible transition from monolithic, high-performance oriented codes to modular and polyglot deployments of specialised (micro-)services. The reasons behind this transition are many: coupling of standard solvers with Deep Learning techniques, offloading of data analysis and visualisation to Cloud, and the advent of specialised hardware accelerators. Topology-aware Workflow Management Systems (WMSs) play a crucial role. In particular, topology-awareness allows an explicit mapping of workflow steps onto heterogeneous locations, allowing automated executions on top of hybrid architectures (e.g., cloud+HPC or classical+quantum). Plus, topology-aware WMSs can offer nonfunctional requirements OOTB, e.g. components’ life-cycle orchestration, secure and efficient data transfers, fault tolerance, and cross-cluster execution of urgent workloads. Augmenting interactive Jupyter Notebooks with distributed workflow capabilities allows domain experts to prototype and scale applications using the same technological stack, while relying on a feature-rich and user-friendly web interface. This abstract will showcase how these general methodologies can be applied to a typical geoscience simulation pipeline based on the Full Wavefront Inversion (FWI) technique. In particular, a prototypical Jupyter Notebook will be executed interactively on Cloud. Preliminary data analyses and post-processing will be executed locally, while the computationally demanding optimisation loop will be scheduled on a remote HPC cluster.
2022
Sixth EAGE High Performance Computing Workshop
Milano
19-21 Settembre 2022
Sixth EAGE High Performance Computing Workshop
European Association of Geoscientists and Engineers
2022
1
5
https://www.earthdoc.org/content/papers/10.3997/2214-4609.2022615029
Iacopo Colonnelli; Marco Aldinucci
File in questo prodotto:
File Dimensione Formato  
Extended_Abstract.pdf

Accesso aperto

Descrizione: preprint
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 185.98 kB
Formato Adobe PDF
185.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1890257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact