Today, to label the massive datasets needed to train Deep Neural Networks (DNNs), cheap and error-prone methods such as crowdsourcing are used. Label aggregation methods aim to infer the true labels from noisy labels annotated by crowdsourcing workers via labels statistics features. Aggregated labels are the main data source to train deep neural networks, and their accuracy directly affects the deep neural network performance. In this paper, we argue that training DNN and aggregating labels are not two separate tasks. Incorporation between DNN training and label aggregation connects data features, noisy labels, and aggregated labels. Since each image contains valuable knowledge about its label, the data features help aggregation methods enhance their performance. We propose LABNET an iterative two-step method. Step one: the label aggregation algorithm provides labels to train the DNN. Step two: the DNN shares a representation of the data features with the label aggregation algorithm. These steps are repeated until the converging label aggregation error rate. To evaluate LABNET we conduct an extensive empirical comparison on CIFAR-10 and CIFAR-100 under different noise and worker statistics. Our evaluation results show that LABNET achieves the highest mean accuracy with an increase of at least 8% to 0.6% and lowest error rate with a reduction of 7.5% to 0.25% against existing aggregation and training methods in most cases.

LABNET: A Collaborative Method for DNN Training and Label Aggregation

Birke, R;
2022-01-01

Abstract

Today, to label the massive datasets needed to train Deep Neural Networks (DNNs), cheap and error-prone methods such as crowdsourcing are used. Label aggregation methods aim to infer the true labels from noisy labels annotated by crowdsourcing workers via labels statistics features. Aggregated labels are the main data source to train deep neural networks, and their accuracy directly affects the deep neural network performance. In this paper, we argue that training DNN and aggregating labels are not two separate tasks. Incorporation between DNN training and label aggregation connects data features, noisy labels, and aggregated labels. Since each image contains valuable knowledge about its label, the data features help aggregation methods enhance their performance. We propose LABNET an iterative two-step method. Step one: the label aggregation algorithm provides labels to train the DNN. Step two: the DNN shares a representation of the data features with the label aggregation algorithm. These steps are repeated until the converging label aggregation error rate. To evaluate LABNET we conduct an extensive empirical comparison on CIFAR-10 and CIFAR-100 under different noise and worker statistics. Our evaluation results show that LABNET achieves the highest mean accuracy with an increase of at least 8% to 0.6% and lowest error rate with a reduction of 7.5% to 0.25% against existing aggregation and training methods in most cases.
2022
14th International Conference on Agents and Artificial Intelligence
Virtual
February 3-5, 2022
Proceedings of the 14th International Conference on Agents and Artificial Intelligence
SCITEPRESS
2
56
66
978-989-758-547-0
Crowdsourcing; Deep Learning; Noisy Labels; Label Aggregation
Ghiassi, A; Birke, R; Chen, L
File in questo prodotto:
File Dimensione Formato  
2022 ICAART LABNET- A Collaborative Method for DNN Training and Label Aggregation.pdf

Accesso riservato

Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1890497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact