In this work, we introduce a family of methods for the analysis of data observed at locations scattered in three-dimensional (3D) domains, with possibly complicated shapes. The proposed family of methods includes smoothing, regression, and functional principal component analysis for functional signals defined over (possibly nonconvex) 3D domains, appropriately complying with the nontrivial shape of the domain. This constitutes an important advance with respect to the literature, because the available methods to analyze data observed in 3D domains rely on Euclidean distances, which are inappropriate when the shape of the domain influences the phenomenon under study. The common building block of the proposed methods is a nonparametric regression model with differential regularization. We derive the asymptotic properties of the methods and show, through simulation studies, that they are superior to the available alternatives for the analysis of data in 3D domains, even when considering do...
Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis
Arnone E.;
2023-01-01
Abstract
In this work, we introduce a family of methods for the analysis of data observed at locations scattered in three-dimensional (3D) domains, with possibly complicated shapes. The proposed family of methods includes smoothing, regression, and functional principal component analysis for functional signals defined over (possibly nonconvex) 3D domains, appropriately complying with the nontrivial shape of the domain. This constitutes an important advance with respect to the literature, because the available methods to analyze data observed in 3D domains rely on Euclidean distances, which are inappropriate when the shape of the domain influences the phenomenon under study. The common building block of the proposed methods is a nonparametric regression model with differential regularization. We derive the asymptotic properties of the methods and show, through simulation studies, that they are superior to the available alternatives for the analysis of data in 3D domains, even when considering do...File | Dimensione | Formato | |
---|---|---|---|
2023_Biometrics_Postprint.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
6.65 MB
Formato
Adobe PDF
|
6.65 MB | Adobe PDF | Visualizza/Apri |
biometrics_79_4_3510.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.