We prove bubble-tree convergence of sequences of gradient Ricci shrinkers with uniformly bounded entropy and uniform local energy bounds, refining the compactness theory of Haslhofer-Mueller. In particular, we show that no energy concentrates in neck regions, a result which implies a local energy identity for the sequence. Direct consequences of these results are an identity for the Euler characteristic and a local diffeomorphism finiteness theorem.

Bubble-Tree Convergence and Local Diffeomorphism Finiteness for Gradient Ricci Shrinkers

Reto Buzano
;
2023-01-01

Abstract

We prove bubble-tree convergence of sequences of gradient Ricci shrinkers with uniformly bounded entropy and uniform local energy bounds, refining the compactness theory of Haslhofer-Mueller. In particular, we show that no energy concentrates in neck regions, a result which implies a local energy identity for the sequence. Direct consequences of these results are an identity for the Euler characteristic and a local diffeomorphism finiteness theorem.
2023
304
1
32
http://arxiv.org/abs/2206.06791v2
Differential Geometry, Ricci flow, Ricci solitons
Reto Buzano; Louis Yudowitz
File in questo prodotto:
File Dimensione Formato  
s00209-023-03272-z.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 521.91 kB
Formato Adobe PDF
521.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1908290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact