Since its debut in 2016, Federated Learning (FL) has been tied to the inner workings of Deep Neural Networks (DNNs); this allowed its development as DNNs proliferated but neglected those scenarios in which using DNNs is not possible or advantageous. The fact that most current FL frameworks only support DNNs reinforces this problem. To address the lack of non-DNN-based FL solutions, we propose MAFL (Model-Agnostic Federated Learning). MAFL merges a model-agnostic FL algorithm, AdaBoost.F, with an open industry-grade FL framework: Intel® OpenFL. MAFL is the first FL system not tied to any machine learning model, allowing exploration of FL beyond DNNs. We test MAFL from multiple points of view, assessing its correctness, flexibility, and scaling properties up to 64 nodes of an HPC cluster. We also show how we optimised OpenFL achieving a 5.5× speedup over a standard FL scenario. MAFL is compatible with x86-64, ARM-v8, Power and RISC-V.
Model-Agnostic Federated Learning
Gianluca Mittone
First
;Iacopo Colonnelli;Robert Birke;Marco AldinucciLast
2023-01-01
Abstract
Since its debut in 2016, Federated Learning (FL) has been tied to the inner workings of Deep Neural Networks (DNNs); this allowed its development as DNNs proliferated but neglected those scenarios in which using DNNs is not possible or advantageous. The fact that most current FL frameworks only support DNNs reinforces this problem. To address the lack of non-DNN-based FL solutions, we propose MAFL (Model-Agnostic Federated Learning). MAFL merges a model-agnostic FL algorithm, AdaBoost.F, with an open industry-grade FL framework: Intel® OpenFL. MAFL is the first FL system not tied to any machine learning model, allowing exploration of FL beyond DNNs. We test MAFL from multiple points of view, assessing its correctness, flexibility, and scaling properties up to 64 nodes of an HPC cluster. We also show how we optimised OpenFL achieving a 5.5× speedup over a standard FL scenario. MAFL is compatible with x86-64, ARM-v8, Power and RISC-V.File | Dimensione | Formato | |
---|---|---|---|
MAFL_EuroPar2023.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
MAFL.pdf
Accesso riservato
Descrizione: PDF Editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.