In this paper, we explore the usage of hierarchical priors to improve learning in contexts where the number of available examples is extremely low. Specifically, we consider a Prototype Learning setting where deep neural networks are used to embed data in hyperspherical geometries. In this scenario, we propose an innovative way to learn the prototypes by combining class separation and hierarchical information. In addition, we introduce a contrastive loss function capable of balancing the exploitation of prototypes through a prototype pruning mechanism. We compare the proposed method with state-of-the-art approaches on two public datasets.

Hierarchical Priors for Hyperspherical Prototypical Networks

Samuele Fonio;Lorenzo Paletto;Mattia Cerrato;Dino Ienco;Roberto Esposito
2023-01-01

Abstract

In this paper, we explore the usage of hierarchical priors to improve learning in contexts where the number of available examples is extremely low. Specifically, we consider a Prototype Learning setting where deep neural networks are used to embed data in hyperspherical geometries. In this scenario, we propose an innovative way to learn the prototypes by combining class separation and hierarchical information. In addition, we introduce a contrastive loss function capable of balancing the exploitation of prototypes through a prototype pruning mechanism. We compare the proposed method with state-of-the-art approaches on two public datasets.
2023
Inglese
contributo
1 - Conferenza
European Symposium on Artifical Neural Networks, Computational Intelligence and Machine Learning
Bruges, Belgio
4 Ottobre - 6 Ottobre 2023
Internazionale
Samuele Fonio, Lorenzo Paletto, Mattia Cerrato, Dino Ienco, Roberto Esposito
ESANN 2023 - Proceedings
Comitato scientifico
ESANN
Bruges
BELGIO
459
464
6
978-2-87587-088-9
https://doi.org/10.14428/esann/2023.ES2023-65
Prototype Learning, Image Classification, Few data, Hyperspherical networks
FRANCIA
GERMANIA
   Future HPC & Big Data-finanziato con fondi PNRR MUR-M4C2-Investimento 1.4-Avviso"Centri Nazionali"-D.D.n.3138 del 16/12/2021 rettificato con DD n.3175 del 18/12/2021,codice MUR CN00000013, CUP D13C22001340001
   CN-HPC
   Ministero dell'Università e della Ricerca
   ALDINUCCI M.- CN-HPC
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
5
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Samuele Fonio, Lorenzo Paletto, Mattia Cerrato, Dino Ienco, Roberto Esposito
273
open
File in questo prodotto:
File Dimensione Formato  
ES2023-65.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1938110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact