In this paper we prove that an isometry between orbit spaces of two proper isometric actions is smooth if it preserves the codimension of the orbits or if the orbit spaces have no boundary. In other words, we generalize Myers–Steenrod’s theorem for orbit spaces. These results are proved in the more general context of singular Riemannian foliations.

Isometries between leaf spaces

Radeschi M.
2015-01-01

Abstract

In this paper we prove that an isometry between orbit spaces of two proper isometric actions is smooth if it preserves the codimension of the orbits or if the orbit spaces have no boundary. In other words, we generalize Myers–Steenrod’s theorem for orbit spaces. These results are proved in the more general context of singular Riemannian foliations.
2015
174
1
193
201
Myers–Steenrod’s theorem; Orbit spaces; Singular Riemannian foliations
Alexandrino M.M.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
AlexandrinoRadeschi-isometries-between-leaf-spaces.pdf

Accesso aperto

Dimensione 193.04 kB
Formato Adobe PDF
193.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1944796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact