We find many examples of compact Riemannian manifolds (M, g) whose closed minimal hypersurfaces satisfy a lower bound on their index that is linear in their first Betti number. Moreover, we show that these bounds remain valid when the metric g is replaced with g′ in a neighbourhood of g. Our examples (M, g) consist of certain minimal isoparametric hypersurfaces of spheres, their focal manifolds, the Lie groups SU (n) for n≤ 17 and Sp (n) for all n, and all quaternionic Grassmannians.

Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces

Radeschi M.
2019-01-01

Abstract

We find many examples of compact Riemannian manifolds (M, g) whose closed minimal hypersurfaces satisfy a lower bound on their index that is linear in their first Betti number. Moreover, we show that these bounds remain valid when the metric g is replaced with g′ in a neighbourhood of g. Our examples (M, g) consist of certain minimal isoparametric hypersurfaces of spheres, their focal manifolds, the Lie groups SU (n) for n≤ 17 and Sp (n) for all n, and all quaternionic Grassmannians.
2019
58
4
1
22
Gorodski C.; Mendes R.A.E.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
Gorodski2019_Article_RobustIndexBoundsForMinimalHyp.pdf

Accesso aperto

Dimensione 436.18 kB
Formato Adobe PDF
436.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact