We show Laplacian algebras are maximal, and give applications to the Classical Invariant Theory of real orthogonal representations of compact groups, including: The solution of the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when a separating set is a generating set. And the introduction of a class of generalized polarizations which, in a certain class of representations (including all representations of finite groups), always generates the algebra of invariants of their diagonal representations.

Maximality of Laplacian algebras, with applications to Invariant Theory

Radeschi M.
2023-01-01

Abstract

We show Laplacian algebras are maximal, and give applications to the Classical Invariant Theory of real orthogonal representations of compact groups, including: The solution of the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when a separating set is a generating set. And the introduction of a class of generalized polarizations which, in a certain class of representations (including all representations of finite groups), always generates the algebra of invariants of their diagonal representations.
2023
202
2
1011
1031
Invariant Theory; Singular Riemannian foliations
Mendes R.A.E.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
Paper.pdf

Accesso aperto

Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact