In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in "green" criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 mu g/mL following photodynamic activation, whereas it drastically dropped to 12 mu g/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 mu g/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare.

Encapsulation in Oxygen-Loaded Nanobubbles Enhances the Antimicrobial Effectiveness of Photoactivated Curcumin

Munir, Zunaira
First
;
Molinar, Chiara;Banche, Giuliana;Argenziano, Monica;Magnano, Greta;Cavallo, Lorenza;Mandras, Narcisa
;
Cavalli, Roberta;Guiot, Caterina
Last
2023-01-01

Abstract

In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in "green" criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 mu g/mL following photodynamic activation, whereas it drastically dropped to 12 mu g/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 mu g/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare.
2023
24
21
1
24
https://doi.org/10.3390/ijms242115595
antibiotic resistance; curcumin; nanobubbles; oxygen; photoactivation
Munir, Zunaira; Molinar, Chiara; Banche, Giuliana; Argenziano, Monica; Magnano, Greta; Cavallo, Lorenza; Mandras, Narcisa; Cavalli, Roberta; Guiot, Ca...espandi
File in questo prodotto:
File Dimensione Formato  
Munir et al_ijms-24-15595.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945825
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact