Let $\mathcal{L}$ be a first-order two-sorted language and consider a class of $\mathcal{L}$-structures of the form $\langle M, X \rangle$ where $M$ varies among structures of the first sort, while $X$ is fixed in the second sort, and it is assumed to be a compact Hausdorff space. When $X$ is a compact subset of the real line, one way to treat classes of this kind model-theoretically is via continuous-valued logic, as in [Ben Yaacov-Berenstein-Henson-Usvyatsov 2010]. Prior to that, Henson and Iovino proposed an approach based on the notion of positive formulas [Henson-Iovino 2002]. Their work is tailored to the model theory of Banach spaces. Here we show that a similar approach is possible for a more general class of models. We introduce suitable versions of elementarity, compactness, saturation, quantifier elimination and other basic tools, and we develop basic model theory.

Continuous logic in a classical setting

Luca Motto Ros;Domenico Zambella
2024-01-01

Abstract

Let $\mathcal{L}$ be a first-order two-sorted language and consider a class of $\mathcal{L}$-structures of the form $\langle M, X \rangle$ where $M$ varies among structures of the first sort, while $X$ is fixed in the second sort, and it is assumed to be a compact Hausdorff space. When $X$ is a compact subset of the real line, one way to treat classes of this kind model-theoretically is via continuous-valued logic, as in [Ben Yaacov-Berenstein-Henson-Usvyatsov 2010]. Prior to that, Henson and Iovino proposed an approach based on the notion of positive formulas [Henson-Iovino 2002]. Their work is tailored to the model theory of Banach spaces. Here we show that a similar approach is possible for a more general class of models. We introduce suitable versions of elementarity, compactness, saturation, quantifier elimination and other basic tools, and we develop basic model theory.
2024
http://arxiv.org/abs/2402.01245
MSC classes: 03C66 Continuous model theory, continuous logic, positive logic
Claudio Agostini; Stefano Baratella; Silvia Barbina; Luca Motto Ros; Domenico Zambella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1961092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact