We study the Cauchy problem for Schrodinger type stochastic semilinear partial differential equations with uniformly bounded variable coefficients, depending on the space variables. We give conditions on the coefficients, on the drift and diffusion terms, on the Cauchy data, and on the spectral measure associated with the noise, such that the Cauchy problem admits a unique function-valued mild solution in the sense of Da Prato and Zabczyc.

Solution theory to semilinear stochastic equations of Schrödinger type on curved spaces I: operators with uniformly bounded coefficients

Ascanelli, Alessia;Coriasco, Sandro
;
2024-01-01

Abstract

We study the Cauchy problem for Schrodinger type stochastic semilinear partial differential equations with uniformly bounded variable coefficients, depending on the space variables. We give conditions on the coefficients, on the drift and diffusion terms, on the Cauchy data, and on the spectral measure associated with the noise, such that the Cauchy problem admits a unique function-valued mild solution in the sense of Da Prato and Zabczyc.
2024
118
2
1
15
https://link.springer.com/article/10.1007/s13398-024-01554-7
Stochastic partial differential equations; Schrodinger equation; Curved space; Function-valued solutions; Variable coefficients; Fundamental solution
Ascanelli, Alessia; Coriasco, Sandro; Süss, André
File in questo prodotto:
File Dimensione Formato  
s13398-024-01554-7.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 367.13 kB
Formato Adobe PDF
367.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1962030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact