Large-scale neural recordings with high spatial and temporal accuracy are instrumental to understand how the brain works. To this end, it is of key importance to develop probes that can be conveniently scaled up to a high number of recording channels. Despite recent achievements in complementary metal-oxide semiconductor (CMOS) multi-electrode arrays probes, in current circuit architectures an increase in the number of simultaneously recording channels would significantly increase the total chip area. A promising approach for overcoming this scaling issue consists in the use of the modular Active Pixel Sensor (APS) concept, in which a small front-end circuit is located beneath each electrode. However, this approach imposes challenging constraints on the area of the in-pixel circuit, power consumption and noise. Here, we present an APS CMOS-probe technology for Simultaneous Neural recording that successfully addresses all these issues for whole-array read-outs at 25 kHz/channel from up to 1024 electrode-pixels. To assess the circuit performances, we realized in a 0.18 μm CMOS technology an implantable single-shaft probe with a regular array of 512 electrode-pixels with a pitch of 28 μm. Extensive bench tests showed an in-pixel gain of 45.4 ± 0.4 dB (low pass, F -3 dB = 4 kHz), an input referred noise of 7.5 ± 0.67 μV RMS (300 Hz to 7.5 kHz) and a power consumption <6 μW/pixel. In vivo acute recordings demonstrate that our SiNAPS CMOS-probe can sample full-band bioelectrical signals from each electrode, with the ability to resolve and discriminate activity from several packed neurons both at the spatial and temporal scale. These results pave the way to new generations of compact and scalable active single/multi-shaft brain recording systems.

SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings

Zucca S.;
2019-01-01

Abstract

Large-scale neural recordings with high spatial and temporal accuracy are instrumental to understand how the brain works. To this end, it is of key importance to develop probes that can be conveniently scaled up to a high number of recording channels. Despite recent achievements in complementary metal-oxide semiconductor (CMOS) multi-electrode arrays probes, in current circuit architectures an increase in the number of simultaneously recording channels would significantly increase the total chip area. A promising approach for overcoming this scaling issue consists in the use of the modular Active Pixel Sensor (APS) concept, in which a small front-end circuit is located beneath each electrode. However, this approach imposes challenging constraints on the area of the in-pixel circuit, power consumption and noise. Here, we present an APS CMOS-probe technology for Simultaneous Neural recording that successfully addresses all these issues for whole-array read-outs at 25 kHz/channel from up to 1024 electrode-pixels. To assess the circuit performances, we realized in a 0.18 μm CMOS technology an implantable single-shaft probe with a regular array of 512 electrode-pixels with a pitch of 28 μm. Extensive bench tests showed an in-pixel gain of 45.4 ± 0.4 dB (low pass, F -3 dB = 4 kHz), an input referred noise of 7.5 ± 0.67 μV RMS (300 Hz to 7.5 kHz) and a power consumption <6 μW/pixel. In vivo acute recordings demonstrate that our SiNAPS CMOS-probe can sample full-band bioelectrical signals from each electrode, with the ability to resolve and discriminate activity from several packed neurons both at the spatial and temporal scale. These results pave the way to new generations of compact and scalable active single/multi-shaft brain recording systems.
2019
126
355
364
Active pixel sensor; CMOS-probe; Implantable device; Multi-electrode-array; Neural recording
Angotzi G.N.; Boi F.; Lecomte A.; Miele E.; Malerba M.; Zucca S.; Casile A.; Berdondini L.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0956566318308273-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 7.33 MB
Formato Adobe PDF
7.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1976095
Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 80
social impact