We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon L & uuml;ck's [16] ultraproduct construction for team semantics and prove a suitable version of & Lstrok;o & sacute;' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.

Compactness in team semantics

Quadrellaro, Davide Emilio
2024-01-01

Abstract

We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon L & uuml;ck's [16] ultraproduct construction for team semantics and prove a suitable version of & Lstrok;o & sacute;' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.
2024
70
2
142
161
Puljujärvi, Joni; Quadrellaro, Davide Emilio
File in questo prodotto:
File Dimensione Formato  
Mathematical Logic Qtrly - 2024 - Puljujärvi - Compactness in team semantics-1.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 276.43 kB
Formato Adobe PDF
276.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2015350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact