We show that the four-state problem for general linear differential operators is flexible. The only flexibility result available in this context is the one for the five-state problem for the curl operator due to B. Kirchheim and D. Preiss, [27, Section 4.3], and its generalization [21]. To build our counterexample, we extend the convex integration method introduced by S. Müller and V. Šverák in [33] to linear operators that admit a potential, and we exploit the notion of large TN configuration introduced by C. Förster and L. Székelyhidi in [21].

The four-state problem and convex integration for linear differential operators

Tione R.
2023-01-01

Abstract

We show that the four-state problem for general linear differential operators is flexible. The only flexibility result available in this context is the one for the five-state problem for the curl operator due to B. Kirchheim and D. Preiss, [27, Section 4.3], and its generalization [21]. To build our counterexample, we extend the convex integration method introduced by S. Müller and V. Šverák in [33] to linear operators that admit a potential, and we exploit the notion of large TN configuration introduced by C. Förster and L. Székelyhidi in [21].
2023
284
4
?
?
A-free maps; Convex integration; Flexibility; Four-state problem
Sorella M.; Tione R.
File in questo prodotto:
File Dimensione Formato  
JFA_SorellaTione.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 710.54 kB
Formato Adobe PDF
710.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2020018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact