We deal, for the classical N-body problem, with the existence of action minimizing half entire expansive solutions with prescribed asymptotic direction and initial configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic and parabolic arcs in a unified manner. Our approach is based on the minimization of a renormalized Lagrangian action on a suitable functional space. With this new strategy, we are able to confirm the already-known results of the existence of both hyperbolic and parabolic solutions, and we prove for the first time the existence of hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable class. Associated with each element of this class we find a viscosity solution of the Hamilton-Jacobi equation as a linear correction of the value function. Besides, we also manage to give a precise description of the growth of parabolic and hyperbolic-parabolic solutions.
On the existence of minimal expansive solutions to the $N$-body problem
Polimeni, Davide;Terracini, Susanna
2024-01-01
Abstract
We deal, for the classical N-body problem, with the existence of action minimizing half entire expansive solutions with prescribed asymptotic direction and initial configuration of the bodies. We tackle the cases of hyperbolic, hyperbolic-parabolic and parabolic arcs in a unified manner. Our approach is based on the minimization of a renormalized Lagrangian action on a suitable functional space. With this new strategy, we are able to confirm the already-known results of the existence of both hyperbolic and parabolic solutions, and we prove for the first time the existence of hyperbolic-parabolic solutions for any prescribed asymptotic expansion in a suitable class. Associated with each element of this class we find a viscosity solution of the Hamilton-Jacobi equation as a linear correction of the value function. Besides, we also manage to give a precise description of the growth of parabolic and hyperbolic-parabolic solutions.File | Dimensione | Formato | |
---|---|---|---|
s00222-024-01289-7.pdf
Accesso aperto
Descrizione: articolo
Tipo di file:
PDF EDITORIALE
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.