This work proposes FedSurvBoost, a federated learning pipeline for survival analysis based on the AdaBoost.F algorithm, which iteratively aggregates the best local weak hypotheses. Our method extends AdaBoost.F by removing the dependence on the number of classes coefficient from the computation of the weights of the best model. This makes it suitable for regression tasks, such as survival analysis. We show the effectiveness of our approach by comparing it with state-of-the-art methods, specifically developed for survival analysis problems, on two common survival datasets. Our code is available at https://github.com/oussamaHarrak/FedSurvBoost .

Federated AdaBoost for Survival Analysis

Bruno Casella
Co-first
;
Samuele Fonio
Co-first
;
Piero Fariselli;Gianluca Mittone;Cesare Rollo;Tiziana Sanavia;Marco Aldinucci
Last
In corso di stampa

Abstract

This work proposes FedSurvBoost, a federated learning pipeline for survival analysis based on the AdaBoost.F algorithm, which iteratively aggregates the best local weak hypotheses. Our method extends AdaBoost.F by removing the dependence on the number of classes coefficient from the computation of the weights of the best model. This makes it suitable for regression tasks, such as survival analysis. We show the effectiveness of our approach by comparing it with state-of-the-art methods, specifically developed for survival analysis problems, on two common survival datasets. Our code is available at https://github.com/oussamaHarrak/FedSurvBoost .
In corso di stampa
Inglese
contributo
4 - Workshop
2nd Workshop on Advancements in Federated Learning
Vilnius
13/09/2024
Internazionale
Proceedings of the ECML-PKDD Workshops
Comitato scientifico
Springer
New York
STATI UNITI D'AMERICA
1
9
9
FRANCIA
   EPI SGA2 - European Processor Initiative
   EPI SGA2
   EUROPEAN COMMISSION
   H2020
   POLATO M. - H2020 RIA - G.A. 101036168

   Future HPC & Big Data-finanziato con fondi PNRR MUR-M4C2-Investimento 1.4-Avviso"Centri Nazionali"-D.D.n.3138 del 16/12/2021 rettificato con DD n.3175 del 18/12/2021,codice MUR CN00000013, CUP D13C22001340001
   CN-HPC
   Ministero dell'Università e della Ricerca
   ALDINUCCI M.- CN-HPC
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
8
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Oussama Harrak; Bruno Casella; Samuele Fonio; Piero Fariselli; Gianluca Mittone; Cesare Rollo; Tiziana Sanavia; Marco Aldinucci
273
open
File in questo prodotto:
File Dimensione Formato  
WAFL___ECMLPKDD___FedSurvBoost.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 476.75 kB
Formato Adobe PDF
476.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2030498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact