We study a class of singular dynamical systems which generalise the classical N-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.
Chaotic Phenomena for Generalised N-centre Problems
Baranzini, Stefano;Canneori, Gian Marco
2024-01-01
Abstract
We study a class of singular dynamical systems which generalise the classical N-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.File | Dimensione | Formato | |
---|---|---|---|
2307.09098v1.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
591 kB
Formato
Adobe PDF
|
591 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.