Federated Learning (FL) is experiencing a substantial research interest, with many frameworks being developed to allow practitioners to build federations easily and quickly. Most of these efforts do not consider two main aspects that are key to Machine Learning (ML) software: customizability and performance. This research addresses these issues by implementing an open-source FL framework named FastFederatedLearning (FFL). FFL is implemented in C/C++, focusing on code performance, and allows the user to specify any communication graph between clients and servers involved in the federation, ensuring customizability. FFL is tested against Intel OpenFL, achieving consistent speedups over different computational platforms (x86-64, ARM-v8, RISC-V), ranging from 2.5x and 3.69x. We aim to wrap FFL with a Python interface to ease its use and implement a middleware for different communication backends to be used. We aim to build dynamic federations in which relations between clients and servers are not static, giving life to an environment where federations can be seen as long-time evolving structures and exploited as services.

Efficiently Distributed Federated Learning

Mittone G.;Birke R.;Aldinucci M.
2024-01-01

Abstract

Federated Learning (FL) is experiencing a substantial research interest, with many frameworks being developed to allow practitioners to build federations easily and quickly. Most of these efforts do not consider two main aspects that are key to Machine Learning (ML) software: customizability and performance. This research addresses these issues by implementing an open-source FL framework named FastFederatedLearning (FFL). FFL is implemented in C/C++, focusing on code performance, and allows the user to specify any communication graph between clients and servers involved in the federation, ensuring customizability. FFL is tested against Intel OpenFL, achieving consistent speedups over different computational platforms (x86-64, ARM-v8, RISC-V), ranging from 2.5x and 3.69x. We aim to wrap FFL with a Python interface to ease its use and implement a middleware for different communication backends to be used. We aim to build dynamic federations in which relations between clients and servers are not static, giving life to an environment where federations can be seen as long-time evolving structures and exploited as services.
2024
Inglese
contributo
4 - Workshop
International workshops held at the 29th International Conference on Parallel and Distributed Computing, Euro-Par 2023
cyprus
2023
Internazionale
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Comitato scientifico
Springer Science and Business Media Deutschland GmbH
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
GERMANIA
14352
321
326
6
9783031488023
9783031488030
Distributed Computing; Federated Learning; HPC
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
3
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Mittone G.; Birke R.; Aldinucci M.
273
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2031766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact