In order to approximate functions defined on $(-1,1)$ which can grow exponentially at $\pm 1$, we introduce an Hermite and an Hermite–Fejér-type interpolation process based at Pollaczek-type zeros. We prove the convergence of these processes in weighted uniform and $L^p$ norms and provide error estimates which are comparable with the best weighted approximation in suitable function spaces.
Hermite and Hermite-Fejér interpolation at Pollaczek zeros
Incoronata Notarangelo
2024-01-01
Abstract
In order to approximate functions defined on $(-1,1)$ which can grow exponentially at $\pm 1$, we introduce an Hermite and an Hermite–Fejér-type interpolation process based at Pollaczek-type zeros. We prove the convergence of these processes in weighted uniform and $L^p$ norms and provide error estimates which are comparable with the best weighted approximation in suitable function spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
78a7e38e-d09a-449e-840c-fda6188da408.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
382.5 kB
Formato
Adobe PDF
|
382.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.