In order to approximate functions defined on $(-1,1)$ which can grow exponentially at $\pm 1$, we introduce an Hermite and an Hermite–Fejér-type interpolation process based at Pollaczek-type zeros. We prove the convergence of these processes in weighted uniform and $L^p$ norms and provide error estimates which are comparable with the best weighted approximation in suitable function spaces.

Hermite and Hermite-Fejér interpolation at Pollaczek zeros

Incoronata Notarangelo
2024-01-01

Abstract

In order to approximate functions defined on $(-1,1)$ which can grow exponentially at $\pm 1$, we introduce an Hermite and an Hermite–Fejér-type interpolation process based at Pollaczek-type zeros. We prove the convergence of these processes in weighted uniform and $L^p$ norms and provide error estimates which are comparable with the best weighted approximation in suitable function spaces.
2024
1
22
https://link.springer.com/article/10.1007/s10092-024-00630-z
Hermite interpolation, Hermite–Fejér interpolation, Weighted polynomial approximation, Orthogonal polynomials, Pollaczek-type zeros, Exponential weights
Giuseppe Mastroianni; Incoronata Notarangelo
File in questo prodotto:
File Dimensione Formato  
78a7e38e-d09a-449e-840c-fda6188da408.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 382.5 kB
Formato Adobe PDF
382.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2034111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact