PIGC encodes a protein essential for the biosynthesis of glycophosphatidylinositol-anchored proteins (GPI-APs). So far, three families with biallelic PIGC variants have been reported to exhibit developmental delay/intellectual disability and seizures. Our aim was to further elucidate the clinical and biomolecular characteristics of PIGC pathogenic or likely pathogenic variants. We established a cohort of 18 previously unreported probands. Clinical data were collected, and causative variants were identified though genome/exome sequencing. Variants were modelled in silico using AlphaFold2. Flow cytometry was performed to analyze the cell-surface expression of GPI-APs. The probands displayed a severe neurodevelopmental disorder characterized by developmental and cognitive impairment, early-onset and treatment-resistant seizures, and premature death affecting 10 out of 18 individuals (median age of 40 months, ranging from 40 days to 7 years). Additional features included brain imaging abnormalities (14/15), hypotonia (15/18), and skeletal anomalies (5/17). One patient exhibited mildly elevated alkaline phosphatase levels. All harbored biallelic PIGC variants, with 14 out of 18 of those being homozygous variants. Analysis of samples derived from probands and cellular models showed reduced cell surface levels of GPI-APs. This study confirms the association of PIGC biallelic variants with refractory seizures, severe developmental and cognitive impairments, and highlights their association with childhood-onset mortality. Additionally, it shows that dysfunctional PIGC results in defective biosynthesis of GPI-AP.
PIGC-related encephalopathy: Lessons learned from 18 new probands
Carli, Diana;Brusco, Alfredo;Ferrero, Giovanni Battista;
2025-01-01
Abstract
PIGC encodes a protein essential for the biosynthesis of glycophosphatidylinositol-anchored proteins (GPI-APs). So far, three families with biallelic PIGC variants have been reported to exhibit developmental delay/intellectual disability and seizures. Our aim was to further elucidate the clinical and biomolecular characteristics of PIGC pathogenic or likely pathogenic variants. We established a cohort of 18 previously unreported probands. Clinical data were collected, and causative variants were identified though genome/exome sequencing. Variants were modelled in silico using AlphaFold2. Flow cytometry was performed to analyze the cell-surface expression of GPI-APs. The probands displayed a severe neurodevelopmental disorder characterized by developmental and cognitive impairment, early-onset and treatment-resistant seizures, and premature death affecting 10 out of 18 individuals (median age of 40 months, ranging from 40 days to 7 years). Additional features included brain imaging abnormalities (14/15), hypotonia (15/18), and skeletal anomalies (5/17). One patient exhibited mildly elevated alkaline phosphatase levels. All harbored biallelic PIGC variants, with 14 out of 18 of those being homozygous variants. Analysis of samples derived from probands and cellular models showed reduced cell surface levels of GPI-APs. This study confirms the association of PIGC biallelic variants with refractory seizures, severe developmental and cognitive impairments, and highlights their association with childhood-onset mortality. Additionally, it shows that dysfunctional PIGC results in defective biosynthesis of GPI-AP.| File | Dimensione | Formato | |
|---|---|---|---|
|
235. PIGC releted encephalopathy_2025.pdf
Accesso riservato
Descrizione: File principale
Tipo di file:
PDF EDITORIALE
Dimensione
4.14 MB
Formato
Adobe PDF
|
4.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Pre print_IRIS_PIGC_manuscript_March6.pdf
Accesso aperto
Descrizione: Pre-print
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
785.2 kB
Formato
Adobe PDF
|
785.2 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



