Given a $C^{1}$ function $H\colon\mathbb{R}^{3}\to \mathbb{R}$, we look for $H$-bubbles, i.e, surfaces in $\mathbb{R}^{3}$ parametrized by the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every regular point. Here we study the case $H(u)=H_{0}(u)+ \varepsilon H_{1}(u)$ where $H_{0}$ is some "good" curvature (for which there exist $H_{0}$-bubbles with minimal energy, uniformly bounded in $L^{\infty}$), $\varepsilon$ is the smallness parameter, and $H_{1}$ is {\em any} $C^{1}$ function.
Existence of H-bubbles in a perturbative setting
CALDIROLI, Paolo;
2004-01-01
Abstract
Given a $C^{1}$ function $H\colon\mathbb{R}^{3}\to \mathbb{R}$, we look for $H$-bubbles, i.e, surfaces in $\mathbb{R}^{3}$ parametrized by the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every regular point. Here we study the case $H(u)=H_{0}(u)+ \varepsilon H_{1}(u)$ where $H_{0}$ is some "good" curvature (for which there exist $H_{0}$-bubbles with minimal energy, uniformly bounded in $L^{\infty}$), $\varepsilon$ is the smallness parameter, and $H_{1}$ is {\em any} $C^{1}$ function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ibero2002.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
192.11 kB
Formato
Adobe PDF
|
192.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.