Given a $C^{1}$ function $H\colon\mathbb{R}^{3}\to \mathbb{R}$, we look for $H$-bubbles, i.e, surfaces in $\mathbb{R}^{3}$ parametrized by the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every regular point. Here we study the case $H(u)=H_{0}(u)+ \varepsilon H_{1}(u)$ where $H_{0}$ is some "good" curvature (for which there exist $H_{0}$-bubbles with minimal energy, uniformly bounded in $L^{\infty}$), $\varepsilon$ is the smallness parameter, and $H_{1}$ is {\em any} $C^{1}$ function.

Existence of H-bubbles in a perturbative setting

CALDIROLI, Paolo;
2004-01-01

Abstract

Given a $C^{1}$ function $H\colon\mathbb{R}^{3}\to \mathbb{R}$, we look for $H$-bubbles, i.e, surfaces in $\mathbb{R}^{3}$ parametrized by the sphere $\mathbb{S}^{2}$ with mean curvature $H$ at every regular point. Here we study the case $H(u)=H_{0}(u)+ \varepsilon H_{1}(u)$ where $H_{0}$ is some "good" curvature (for which there exist $H_{0}$-bubbles with minimal energy, uniformly bounded in $L^{\infty}$), $\varepsilon$ is the smallness parameter, and $H_{1}$ is {\em any} $C^{1}$ function.
2004
20
611
626
http://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=20&iss=2&rank=12&srch=searchterm%7Ccaldiroli
parametric surfaces; prescribed mean curvature
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
ibero2002.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 192.11 kB
Formato Adobe PDF
192.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/27729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 7
social impact