We extend the Description Logic ALC with a “typicality” operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called ALC + T. The typicality operator is intended to select the “most normal” or “most typical” instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our calculus gives a nondeterministic-exponential time decision procedure for satisfiability of ALC + T. We then extend ALC + T knowledge bases by a nonmonotonic completion that allows inferring defeasible properties of specific concept instances.
Preferential Description Logics
GLIOZZI, Valentina;POZZATO, GIAN LUCA
2007-01-01
Abstract
We extend the Description Logic ALC with a “typicality” operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called ALC + T. The typicality operator is intended to select the “most normal” or “most typical” instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our calculus gives a nondeterministic-exponential time decision procedure for satisfiability of ALC + T. We then extend ALC + T knowledge bases by a nonmonotonic completion that allows inferring defeasible properties of specific concept instances.File | Dimensione | Formato | |
---|---|---|---|
LPAR 2007.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
291.76 kB
Formato
Adobe PDF
|
291.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.