Hypertrophic scarring is a skin disorder characterized by persistent inflammation and fibrosis that may occur after wounding or thermal injury. Altered production of cytokines and growth factors, such as TGF-beta, play an important role in this process. Activin A, a member of the TGF-beta family, shares the same intra-cellular Smad signalling pathway with TGF-beta, but binds to its own specific transmembrane receptors and to follistatin, a secreted protein that inhibits activin by sequestration. Recent studies provide evidences of a novel role of activin A in inflammatory and repair processes. The aim of this study was to evaluate the importance of activin A and follistatin expression in the different phases of scar evolution. Immunostaining of sections obtained from active phase hypertrophic scars (AHS) revealed the presence of a high number of alpha-SMA(+) myofibroblasts and DC-SIGN(+) dendritic cells coexpressing activin A. Ex-vivo AHS fibroblasts produced more activin and less follistatin than normal skin or remission phase hypertrophic scar (HS) fibroblasts, both in basal conditions and upon TGF-betas stimulation. We demonstrate that fibroblasts do express activin receptors, and that this expression is not affected by TGF-betas. Treatment of HS fibroblasts with activin A induced Akt phosphorylation, promoted cell proliferation, and enhanced alpha-SMA and type I collagen expression. Follistatin reduced proliferation and suppressed activin-induced collagen expression. These results indicate that the activin/follistatin interplay has a role in HS formation and evolution. The impact of these observations on the understanding of wound healing and on the identification of new therapeutic targets is discussed.
Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin
MUSSO, Tiziana;SCUTERA, SARA AGATA CATERINA;CAPOSIO, Patrizia;ZUCCA, Mario;
2007-01-01
Abstract
Hypertrophic scarring is a skin disorder characterized by persistent inflammation and fibrosis that may occur after wounding or thermal injury. Altered production of cytokines and growth factors, such as TGF-beta, play an important role in this process. Activin A, a member of the TGF-beta family, shares the same intra-cellular Smad signalling pathway with TGF-beta, but binds to its own specific transmembrane receptors and to follistatin, a secreted protein that inhibits activin by sequestration. Recent studies provide evidences of a novel role of activin A in inflammatory and repair processes. The aim of this study was to evaluate the importance of activin A and follistatin expression in the different phases of scar evolution. Immunostaining of sections obtained from active phase hypertrophic scars (AHS) revealed the presence of a high number of alpha-SMA(+) myofibroblasts and DC-SIGN(+) dendritic cells coexpressing activin A. Ex-vivo AHS fibroblasts produced more activin and less follistatin than normal skin or remission phase hypertrophic scar (HS) fibroblasts, both in basal conditions and upon TGF-betas stimulation. We demonstrate that fibroblasts do express activin receptors, and that this expression is not affected by TGF-betas. Treatment of HS fibroblasts with activin A induced Akt phosphorylation, promoted cell proliferation, and enhanced alpha-SMA and type I collagen expression. Follistatin reduced proliferation and suppressed activin-induced collagen expression. These results indicate that the activin/follistatin interplay has a role in HS formation and evolution. The impact of these observations on the understanding of wound healing and on the identification of new therapeutic targets is discussed.File | Dimensione | Formato | |
---|---|---|---|
Fumagalli.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
891.14 kB
Formato
Adobe PDF
|
891.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Exp Derm 2007 activin.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
886.47 kB
Formato
Adobe PDF
|
886.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.