The proto-oncogene c-MET encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF), a pleiotropic cytokine controlling growth, survival, motility, invasive migration, and differentiation of epithelial cells. Like several other epithelial neoplasms, thyroid carcinomas have been found to overexpress c-MET at both the mRNA and protein level. The biological relevance of Met overexpression to thyroid carcinoma natural history, however, remains to be elucidated. Therefore, we analyzed Met expression and response to HGF in two cell lines established from human thyroid carcinomas. In both lines we observed that the overexpressed and constitutively tyrosine phosphorylated HGF receptor maintained biochemical responsiveness to the ligand. Both cell lines were also found to respond to HGF by consistently increasing their motility and invading in vitro reconstituted basal membranes. Conversely, no effect of HGF could be observed in proliferation and survival assays. These data show that overexpression of Met specifically confers to transformed thyroid cells a motile-invasive phenotype that is dependent on exogenous HGF stimulation.

Met overexpression confers HGF-dependent invasive phenotype to human thyroid carcinoma cells in vitro.

SENA, Luigi Massimino;MEDICO, Enzo
1999-01-01

Abstract

The proto-oncogene c-MET encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF), a pleiotropic cytokine controlling growth, survival, motility, invasive migration, and differentiation of epithelial cells. Like several other epithelial neoplasms, thyroid carcinomas have been found to overexpress c-MET at both the mRNA and protein level. The biological relevance of Met overexpression to thyroid carcinoma natural history, however, remains to be elucidated. Therefore, we analyzed Met expression and response to HGF in two cell lines established from human thyroid carcinomas. In both lines we observed that the overexpressed and constitutively tyrosine phosphorylated HGF receptor maintained biochemical responsiveness to the ligand. Both cell lines were also found to respond to HGF by consistently increasing their motility and invading in vitro reconstituted basal membranes. Conversely, no effect of HGF could be observed in proliferation and survival assays. These data show that overexpression of Met specifically confers to transformed thyroid cells a motile-invasive phenotype that is dependent on exogenous HGF stimulation.
1999
180
365
371
DE LUCA A ;ARENA N ;SENA LM ;MEDICO E
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37706
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact