OBJECTIVE: Mesenchymal stem cells (MSCs) are multipotent cells that can self-renew, proliferate, and exhibit elevated cellular plasticity. To investigate their possible neural fate, we studied human mesenchymal stem cells (hMSCs) in different cell culture conditions from morphological, immunochemical, gene expression, and physiological points of view. MATERIALS AND METHODS: We tested hMSCs in three previously reported experimental conditions made of alpha-modified minimum essential medium (alpha-MEM)/1 mM beta-mercaptoethanol (betaME), 10 microM alpha-MEM/retinoic acid (RA) or alpha-MEM/2% dimethylsulfoxide (DMSO) + 200 microM beta-hydroxyanisole (BHA), respectively, and in a new experimental condition with neural progenitor maintenance medium (NPMM). RESULTS: hMSCs were isolated from bone marrow and expanded for several passages. In betaME, cells became immunoreactive for neuronal nuclear antigen (NeuN), neuron-specific enolase (NSE), Nestin, and glial fibrillary acidic protein (GFAP). In experimental conditions with RA and DMSO/BHA, hMSCs were NeuN and NSE-positive while in NPMM they were positive for GFAP and NSE. Untreated hMSCs showed a weak mRNA expression for microtubule-associated protein, NSE, and neurofilament protein-medium and GFAP, which strongly increased in NPMM-treated hMSCs. In the electrophysiological study, NPMM-differentiated hMSCs expressed two delayed rectifier K+ currents related to two ether-Ó-go-go K+ channels (eag1, eag2), which are fundamental for setting the negative resting potentials required for neuronal survival and basal cell activity. The two K+ channels were absent in undifferentiated hMSCs. These data were confirmed by real-time polymerase chain reaction. CONCLUSION: In our new culture condition, hMSCs acquired new morphological characteristics, neural markers, and electrophysiological properties, which are suggestive of neural differentiation. This might lead to clinical use of hMSCs in neural degenerative diseases.

Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types

MARESCHI, Katia;FERRERO, Ivana;CARBONE, Emilio;MEDICO, Enzo;MADON, Enrico;VERCELLI, Alessandro;FAGIOLI F.
2006

Abstract

OBJECTIVE: Mesenchymal stem cells (MSCs) are multipotent cells that can self-renew, proliferate, and exhibit elevated cellular plasticity. To investigate their possible neural fate, we studied human mesenchymal stem cells (hMSCs) in different cell culture conditions from morphological, immunochemical, gene expression, and physiological points of view. MATERIALS AND METHODS: We tested hMSCs in three previously reported experimental conditions made of alpha-modified minimum essential medium (alpha-MEM)/1 mM beta-mercaptoethanol (betaME), 10 microM alpha-MEM/retinoic acid (RA) or alpha-MEM/2% dimethylsulfoxide (DMSO) + 200 microM beta-hydroxyanisole (BHA), respectively, and in a new experimental condition with neural progenitor maintenance medium (NPMM). RESULTS: hMSCs were isolated from bone marrow and expanded for several passages. In betaME, cells became immunoreactive for neuronal nuclear antigen (NeuN), neuron-specific enolase (NSE), Nestin, and glial fibrillary acidic protein (GFAP). In experimental conditions with RA and DMSO/BHA, hMSCs were NeuN and NSE-positive while in NPMM they were positive for GFAP and NSE. Untreated hMSCs showed a weak mRNA expression for microtubule-associated protein, NSE, and neurofilament protein-medium and GFAP, which strongly increased in NPMM-treated hMSCs. In the electrophysiological study, NPMM-differentiated hMSCs expressed two delayed rectifier K+ currents related to two ether-Ó-go-go K+ channels (eag1, eag2), which are fundamental for setting the negative resting potentials required for neuronal survival and basal cell activity. The two K+ channels were absent in undifferentiated hMSCs. These data were confirmed by real-time polymerase chain reaction. CONCLUSION: In our new culture condition, hMSCs acquired new morphological characteristics, neural markers, and electrophysiological properties, which are suggestive of neural differentiation. This might lead to clinical use of hMSCs in neural degenerative diseases.
34
1563
1572
stem cell; differentiation; cell culture
MARESCHI K; NOVARA M; RUSTICHELLI D; FERRERO I; GUIDO D; CARBONE E; MEDICO E; MADON E; VERCELLI A; FAGIOLI F
File in questo prodotto:
File Dimensione Formato  
Mareschi et al Experim Hematology 2006.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/39718
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 117
social impact