We prove super-exponential decay estimates and holomorphic extensions for the solutions of harmonic oscillator type-equations. The functional setting for our estimates is given by the Gelfand-Shilov classes $S^{\mu}_{\nu}(\R^n),$ cf. Introduction. In the one-dimensional case, explicit solutions are given in terms of special functions of hypergeometric confluent type.

Decay and regularity for harmonic oscillator-type equations

CAPPIELLO, Marco;RODINO, Luigi Giacomo
2009

Abstract

We prove super-exponential decay estimates and holomorphic extensions for the solutions of harmonic oscillator type-equations. The functional setting for our estimates is given by the Gelfand-Shilov classes $S^{\mu}_{\nu}(\R^n),$ cf. Introduction. In the one-dimensional case, explicit solutions are given in terms of special functions of hypergeometric confluent type.
Linear and Non-linear theory of generalized functions and its applications
Bedlewo (Polonia)
2-8 settembre 2007
20
3
283
290
Super-exponential decay; analytic estimates; Schrödinger operators; Gelfand–Shilov spaces; hypergeometric functions.
M. Cappiello; T. Gramchev; L. Rodino
File in questo prodotto:
File Dimensione Formato  
articoloITSF.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 174.99 kB
Formato Adobe PDF
174.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/57062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact