Learning distances from categorical attributes is a very useful data mining task that allows to perform distance-based techniques, such as clustering and classification by similarity. In this article we propose a new context-based similarity measure that learns distances between the values of a categorical attribute (DILCA - DIstance Learning of Categorical Attributes). We couple our similarity measure with a famous hierarchical distance-based clustering algorithm (Ward's hierarchical clustering) and compare the results with the results obtained from methods of the state of the art for this research field.
Distance Based Clustering for Categorical Data
IENCO, Dino;MEO, Rosa
2009-01-01
Abstract
Learning distances from categorical attributes is a very useful data mining task that allows to perform distance-based techniques, such as clustering and classification by similarity. In this article we propose a new context-based similarity measure that learns distances between the values of a categorical attribute (DILCA - DIstance Learning of Categorical Attributes). We couple our similarity measure with a famous hierarchical distance-based clustering algorithm (Ward's hierarchical clustering) and compare the results with the results obtained from methods of the state of the art for this research field.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.