Let $\Omega$ be a cone in $\mathbb{R}^{n}$ with $n\ge 2$. For every fixed $\alpha\in\mathbb{R}$ we find the best constant in the Rellich inequality $\int_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx\ge C\int_{\Omega}|x|^{\alpha-4}|u|^{2}dx$ for $u\in C^{2}_{c}(\overline\Omega\setminus\{0\})$. We also estimate the best constant for the same inequality on $C^{2}_{c}(\Omega)$. Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.
Rellich inequalities with weights
CALDIROLI, Paolo;
2012-01-01
Abstract
Let $\Omega$ be a cone in $\mathbb{R}^{n}$ with $n\ge 2$. For every fixed $\alpha\in\mathbb{R}$ we find the best constant in the Rellich inequality $\int_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx\ge C\int_{\Omega}|x|^{\alpha-4}|u|^{2}dx$ for $u\in C^{2}_{c}(\overline\Omega\setminus\{0\})$. We also estimate the best constant for the same inequality on $C^{2}_{c}(\Omega)$. Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CalcVar2012.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
325.88 kB
Formato
Adobe PDF
|
325.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.