Let $\Omega$ be a cone in $\mathbb{R}^{n}$ with $n\ge 2$. For every fixed $\alpha\in\mathbb{R}$ we find the best constant in the Rellich inequality $\int_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx\ge C\int_{\Omega}|x|^{\alpha-4}|u|^{2}dx$ for $u\in C^{2}_{c}(\overline\Omega\setminus\{0\})$. We also estimate the best constant for the same inequality on $C^{2}_{c}(\Omega)$. Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.

Rellich inequalities with weights

CALDIROLI, Paolo;
2012-01-01

Abstract

Let $\Omega$ be a cone in $\mathbb{R}^{n}$ with $n\ge 2$. For every fixed $\alpha\in\mathbb{R}$ we find the best constant in the Rellich inequality $\int_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx\ge C\int_{\Omega}|x|^{\alpha-4}|u|^{2}dx$ for $u\in C^{2}_{c}(\overline\Omega\setminus\{0\})$. We also estimate the best constant for the same inequality on $C^{2}_{c}(\Omega)$. Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.
2012
45
147
164
http://arxiv.org/pdf/1103.6184.pdf
Rellich inequality; weighted Laplace-Beltrami operator
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
CalcVar2012.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 325.88 kB
Formato Adobe PDF
325.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/90064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 43
social impact