We show that the periodic b-equation can only be realized as an Euler equation on the Lie goup Diff(S^1) of all smooth and orientiation preserving diffeomorphisms on the cirlce if b=2, i.e. for the Camassa-Holm equation. In this case the inertia operator generating the metric on Diff(S^1) is given by A=1-\partial_{x}^2. In contrast, the Degasperis-Procesi equation, for which b=3, is not an Euler equation on Diff^1(S) for any inertia operator. Our result generalizes a recent result of Kolev.

The periodic b-equation and Euler equations on the circle

SEILER, JOERG
2010-01-01

Abstract

We show that the periodic b-equation can only be realized as an Euler equation on the Lie goup Diff(S^1) of all smooth and orientiation preserving diffeomorphisms on the cirlce if b=2, i.e. for the Camassa-Holm equation. In this case the inertia operator generating the metric on Diff(S^1) is given by A=1-\partial_{x}^2. In contrast, the Degasperis-Procesi equation, for which b=3, is not an Euler equation on Diff^1(S) for any inertia operator. Our result generalizes a recent result of Kolev.
2010
51
-
-
http://arXiv.org/pdf/1001.2987
b-equation; Euler equation; Camassa-Holm equation; Degasperis-Procesi equation
J. Escher; J. Seiler
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/92124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact